
IECE Transactions on Intelligent Unmanned Systems
http://dx.doi.org/10.62762/TIUS.2024.777385

RESEARCH ARTICLE

Enhancing Robotic Grasp Detection with a Novel
Two-Stage Approach: From Conceptualization to
Implementation

Zhe Chu 1, Mengkai Hung 2 and Xiangyu Chen 3,*

1 School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
2 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
3 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710129, China

Abstract
This study introduces a novel two-stage approach for
robotic grasp detection, addressing the challenges
faced by end-to-end deep learning methodologies,
particularly those based on convolutional neural
networks (CNNs) that require extensive and often
impractical datasets. Our method first leverages
a particle swarm optimizer (PSO) as a candidate
estimator, followed by CNN-based verification
to identify the most probable grasp points. This
approach represents a significant advancement in
the field, achieving an impressive accuracy of 92.8%
on the Cornell Grasp Dataset. This positions it
among the leading methods while maintaining
real-time operational capability. Furthermore,
with minor modifications, our technique can
predict multiple grasp points per object, offering
diverse grasping strategies. This adaptability and
high performance suggest substantial potential
for practical applications in robotic systems,
enhancing their efficiency and reliability in dynamic
environments.

Keywords: Robotic grasp detection, Convolutional neural

Academic Editor:
Jinchao Chen

Submitted: 02 June 2024
Accepted: 13 July 2024
Published: 27 July 2024

Vol. 1, No. 1, 2024.
10.62762/TIUS.2024.777385

*Corresponding author:
� Xiangyu Chen
chxy95@mail.nwpu.edu.cn

network, Two-stage cascaded system, Particle swarm
optimizer.

Citation
Chu, Z., Hung, M. & Chen, X. (2024). Enhancing Robotic
Grasp Detection with a Novel Two-Stage Approach: From
Conceptualization to Implementation. IECE Transactions on
Intelligent Unmanned Systems, 1(1), 44–54.
© 2024 IECE (Institute of Emerging and Computer Engineers)

1 Introduction
Robotic grasping is a fundamental function for
intelligent robots to perform various autonomous
manipulation tasks [1]. Humans can instinctively
perceive unstructured environments, identify the
characteristics of an object, and grasp it directly.
However, robots lack this capability, and modeling
the robot’s surrounding environment is both
time-consuming and challenging.
Recently, the development of deep learning has
led to many end-to-end robotic grasp detection
approaches based on convolutional neural networks
(CNNs). Most of these new approaches are one-stage
methods, which identify a good grasp in a single step
using CNNs and achieve high accuracy on datasets.
However, these end-to-end approaches [2, 3] rely
heavily on the accuracy of the trained CNN models,
which in turn depends significantly on the quality
of the datasets. In practical applications, creating
high-quality datasets is difficult. Therefore, to achieve
better practical results, we need a robotic grasp
detection approach that reduces the dependency on
model accuracy.

44

http://dx.doi.org/10.62762/TIUS.2024.777385
http://crossmark.crossref.org/dialog/?doi=10.62762/TIUS.2024.777385&domain=pdf
https://orcid.org/0000-0002-3615-8518
https://orcid.org/0000-0002-7795-0704
https://orcid.org/0000-0003-2156-4959
https://orcid.org/0000-0001-6234-1001
http://dx.doi.org/10.62762/TIUS.2024.777385
mailto:chxy95@mail.nwpu.edu.cn

IECE Transactions on Intelligent Unmanned Systems

Sliding window detection, a method often used in
the past for robotic grasp detection, involves using a
classifier to test selected parts of the image sequentially.
The part with the highest score is considered the best
grasp for the object [4]. Although this method is
somewhat time-consuming, it can mitigate the impact
of model inaccuracies on the final result by using
techniques such as randomization and conditional
constraints.
Building on sliding window detection and CNNs, we
propose a two-stage robotic grasp detection approach
that extracts the optimal grasp from an object’s RGB
image using a PSO candidate estimator and CNN. First,
we develop a robotic grasp identification model based
on a deep CNN to determine if the input represents a
suitable grasp. Next, we identify promising candidate
grasps using the candidate estimator, which employs
a PSO algorithm to find appropriate candidates. This
approach reduces the dependency on model accuracy.
We evaluated our method on the Cornell Grasp
Detection Dataset (see Fig. 1), achieving an accuracy
of 92.8%.

Figure 1. The Cornell Grasp Detection Dataset contains a
diverse array of objects, each labeled with multiple

graspable and ungraspable feature labels.

This paper is organized as follows: In Section 2,
we discuss related work. Section 3 presents our
identification models. In Section 4, we describe our
candidate estimator. Section 5 details our experiment
and evaluation. In Section 6, we present our results
and compare them with other approaches. Section 7
describes our experiment on real robots. Finally, we
provide our conclusions.

2 Related Work
In the past few decades, with the advancement
of robotics [13–17] and artificial intelligence [18],
numerous robotic grasp detection approaches have
been developed. Most early approaches relied on
accurate information about the environment and
objects to identify good grasps. Based on this accurate
information, some methods [5–8] have been used to

achieve successful and stable grasps. However, a
significant drawback of these methods is that robots
often lack prior knowledge of the object’s model,
making it challenging to construct complex 3D models
of the objects.
In recent years, with the development of deep learning,
many researchers have proposed using deep learning
for grasp detection. Here are some notable approaches:
Lenz proposed a two-stage approach based on sliding
window detection [1]. Initially, candidate grasp
rectangles are identified. These candidate grasp
rectangles are then tested using a simple CNN to
obtain a set of high-probability grasps. Finally, a more
complex CNN ranks the grasps filtered out in the first
stage to find the best grasp for the object.
Redmon et al. introduced a new CNN model by
simplifying AlexNet [4]. This model directly regresses
the grasp and classifies the grasp object. With further
developments in deep learning, Kumra et al. proposed
a novel CNN model for robotic grasp detection [3].
This model consists of two 50-layer CNNs and a
shallow CNN. The outputs of the two 50-layer CNNs
are merged and fed into the shallow CNN to predict
the grasp configuration.
However, due to the time-consuming nature of sliding
window detection, Wang et al. proposed a novel
robotic grasp detection system [9]. This system reuses
the results of the previous grasp detection for feedback
to identify candidate grasps with higher probability.
A CNN then evaluates these candidate grasps to
determine the best grasp.
Among these approaches, Ian Lenz and Zhichao
Wang’s methods are two-stage but exhibit moderate
accuracy (see Table 1). In contrast, JosephRedmon and
Sulabh Kumra’s methods are end-to-end, requiring
highly accurate datasets, which is challenging to
achieve in practical use. Therefore, we decided to
pursue a more effective two-stage approach.

3 Identification Model
We employ a CNN as the grasp identification model,
initially training the network as a binary classifier to
enable the model to learn to differentiate between
grasping and non-grasping features. After the training
process, the classification probability from the softmax
layer is used as themodel output. To reduce computing
costs and increase computing speed, we utilized
smaller networks and experimentedwith the following
models.

45

IECE Transactions on Intelligent Unmanned Systems

3.1 Simplified AlexNet model
The foundational architecture of our model is inspired
by the streamlined version of AlexNet introduced
by Krizhevsky [10], a design that excelled in
tackling target recognition challenges with notable
accuracy. Despite sharing its origins with the
AlexNet framework, our model introduces a unique
configuration. As depicted in Figure 2, this model
is composed of three convolutional layers, three
max-pooling layers, and two fully connected layers.
The final step involves the application of a softmax
activation function to yield the output.

Figure 2. Simplified AlexNet model.

We trained the model, achieving a highest training
accuracy of 83.39% and a highest validation accuracy of
82.12%, which are not ideal. To identify issues within
themodel, we employed featuremap visualization. We
outputted the featuremaps after each layer (see Fig. 3).
Observing the input image on the far left of Fig. 3, it is
evident that the key features of the image are located
in the middle. However, the critical feature learned by
our model (highlighted in yellow) was positioned to
the left of the image.

Figure 3. The result of Simplified AlexNet model’s feature
map visualization.

This indicates that our model only extracts some
of the texture details, while failing to capture the
critical features of the image. Furthermore, due to
the presence of pooling layers, less image information
is retained in the deeper layers.

3.2 Original GraspingNet model
Motivated by the shortcomings of the simplified
AlexNet model, we opted for a more sophisticated
architecture aimed at extracting more intricate and
essential features. This decision led us to expand
both the dimensions and quantities of the convolution

kernels. As detailed in Figure 4, the convolutional
layers in our updated model now feature kernels
of sizes 3, 5, and 7, equipped with 32, 64, and 128
kernels, respectively. Notably, we discontinued the
Maxpooling layer following each convolutional stage,
thus preserving a greater amount of information. To
expedite the learning process, we incorporated Batch
Normalization immediately after each convolution
operation and before applying the activation function.
Post the two fully connected layers, we employed the
softmax function to generate our output. For the
activation function within the convolution layers, we
chose the Rectified Linear Unit (ReLU).

Figure 4. Original GraspingNet model.

After training, our model displayed a commendable
training accuracy of 98.50%, yet a less satisfying
validation accuracy of 85.50%, suggesting a
pronounced issue of overfitting. Moreover, the
computational demands of this model were notably
higher, requiring four times the processing time
compared to our initial model. Through the feature
map visualization process (Fig. 5), we observed
that the Original GraspingNet model continued to
struggle with effectively extracting critical features. As
depicted in Fig. 5, these essential features remained
disproportionately located towards the left side of
the images, indicating room for improvement in our
model’s feature extraction capabilities.

Figure 5. The result of Original GraspingNet model’s
feature map visualization.

3.3 Final GraspingNet model
Building upon the insights from our preceding
models, we optimized our identification system
by modifying a conventional CNN architecture.
Typically, a CNN features convolutional layers, pooling
layers, and fully connected layers. In contrast, our
Final GraspingNet model eschews pooling layers

46

IECE Transactions on Intelligent Unmanned Systems

and introduces Batch Normalization between the
convolution and activation stages. Furthermore, to
streamline themodel andmitigate overfitting concerns,
we replaced the resource-intensive fully connected
layers with a Global Average Pooling (GAP) layer.
This strategic alteration enhances themodel’s efficiency
and classification accuracy, while also accelerating its
processing speed. As a result, our final identification
model comprises an 8-layer CNN, predominantly
consisting of convolutional layers, a GAP layer, and an
output layer (Fig. 6).

Figure 6. The architecture of the identification model. There
are 8 convolution layers in the hidden layer. And in each
convolution layer, we do convolution operation, Batch

Normalization operation and Relu operation.

3.3.1 Convolution layer
In our proposed model, we have implemented
significant modifications to the Original GraspingNet
architecture. The primary alteration involves the
replacement of large convolution kernels with more
efficient 3x3 kernels. This strategic change not only
enhances the model’s feature extraction capabilities
but also substantially improves its computational
speed.

The revised architecture employs a sequential
approach in each convolution layer. The data
undergoes three consecutive operations: convolution,
Batch Normalization, and ReLU activation. This
sequence is maintained throughout the network
before the processed data is fed into the subsequent
convolution layer.

In the first convolution layer, we use 32 3x3
convolutional kernels with a stride of 1, and we
ignore the edge pixels of the image by setting padding
to "valid." After the convolution operation, Batch
Normalization and ReLU activation functions are
applied. The operation of the first convolution layer
is defined as Fc1(·), the input is defined as Ic1, and
the output is defined as Rc1. The operation of the first
convolution layer is as follows:

Rc1 = Fc1 (Ic1) (1)

This redesigned architecture, with its emphasis on
smaller kernels and standardized layer operations,
demonstrates a marked improvement in both feature
extraction efficiency and overall model performance.
Following the initial layer, our model incorporates a
series of three successive convolutional layers, each
designed with identical structural parameters. These
layers, denoted as the second, third, and fourth
convolution layers, employ a uniform configuration
of 64 3 × 3 convolution kernels. A stride of 2
is implemented across all three layers, effectively
downsampling the feature maps and reducing spatial
dimensions. This operation is defined as Fc2(·),
and the outputs of the second, third, and fourth
layers are defined as Rc2, Rc3, and Rc4, respectively.
The operations for the second, third, and fourth
convolution layers are as follows:

Rc2 = Fc2 (Rc1) (2)
Rc3 = Fc2 (Rc2) (3)
Rc4 = Fc2 (Rc3) (4)

In the last four convolution layers, we use 128 3x3
convolution kernels with a stride of 2. This operation
is defined as Fc3(·), and the outputs of these four
convolution layers are defined as Rc5, Rc6, Rc7, and
Rc8. The operations for these final four convolution
layers are as follows:

Rc5 = Fc3 (Rc4) (5)
Rc6 = Fc3 (Rc5) (6)
Rc7 = Fc3 (Rc6) (7)
Rc8 = Fc3 (Rc7) (8)

3.3.2 GAP layer
The Global Average Pooling operation conducted by
the GAP layer is defined as FGAP(·), and its output
is defined as RGAP. Thus, the operation can be
expressed as follows:

RGAP = FGAP (Rc8) (9)

3.3.3 Output layer
Before the final output of the model, we first use
1x1 convolution to perform dimensionality reduction
and expansion operations on the output of the GAP
layer to enhance the combination of information
across channels. Additionally, dropout is applied to
further prevent overfitting before these dimensionality
operations.

47

IECE Transactions on Intelligent Unmanned Systems

We define the dropout operation as FD(·), the 1x1
convolution for dimensional expansion as FA(·), and
the output of the dropout and dimensional expansion
operations as RA. Thus, the operations can be
expressed as follows:

RA = FD (FA (RGAP)) (10)

We define the 1x1 convolution reduction operation as
FR(·), and the output of the dropout and dimension
expansion operation as RR. Thus, the operations can
be expressed as follows:

RR = FD (FR (RA)) (11)

Finally, we activate the output using the softmax
function, which provides the model’s identification
results in probabilistic form. We define the softmax
function operation as FS(·), and the output of the
output layer asO. Thus, the operation can be expressed
as follows:

O = FS (RR) (12)

3.3.4 Model training
The training process of a convolutional neural network
model aims to find the global optimal solution in the
parameter space. During this process, many local
optima may be encountered, but it is crucial to bypass
these to reach the global optima and train the best
model.
To achieve this, we used the stochastic gradient descent
method to train the CNNmodel and set the learning
rate in stages. During training (see Fig. 7), the
learning rate decayed every 60 epochs. This approach
allows the model to skip some local optima during the
initial faster training phase. As the model approaches
the optimal solution, the learning rate decreases
significantly, allowing it to converge to the optimal
solution at a very low learning rate. Additionally, we
increased the momentum value during training. This
adjustment helps the model escape local optima and
enhances the stability of the training process to some
extent.

4 Identification Model
4.1 Five-dimensional representation
There are primarily two types of grasp representations.
The first is a seven-dimensional representation
proposed by Yun Jiang [11], and the second is
a five-dimensional representation proposed by Ian
Lenz [1]. The five-dimensional representation

Figure 7. Final GraspingNet training curve.

is a simplified version of the seven-dimensional
representation. For computational convenience, we
use the five-dimensional representation. In this
representation, the grasp is defined as a rectangle
determined by its location, size, and direction, as
follows:

g = {x, y, θ,h,w} (13)
In this representation, (x, y) denotes the location of the
rectangle, θ represents the direction of the rectangle
relative to the horizontal axis, h indicates the length of
the gripper, and w specifies the width of the gripper
opening (see Fig. 8).

Figure 8. Five-dimensional grasp representation.

4.2 Optimizing Grasp Detection using Particle
Swarm Optimization

In the context of sliding window detection, each image
to be detected represents a vast and continuous state
space, necessitating an efficient approach to search for
the optimal grasp. A naive enumeration approach
would require evaluating an enormous number of
candidate grasps, resulting in a prohibitively high
computational cost. For instance, considering an image
of size (224× 224), we would need to examine 50,176
locations. Furthermore, assuming 70 different gripper
lengths, gripper opening widths ranging from 30 to

48

IECE Transactions on Intelligent Unmanned Systems

100, and gripper angles ranging from 0° to 180°in
one-degree increments, the total number of candidates
would reach an astronomical 632,217,600 (50, 176 ×
70× 180).
To mitigate this issue, we propose a novel candidate
estimator based on Particle Swarm Optimization
(PSO), which transforms the grasp search into an
optimization problem. Specifically, the parameters of
this optimization problem are the five-dimensional
representations of each candidate, with the processed
image serving as the state space and image edges
acting as constraints. Our objective is to identify a
candidate that optimizes the grasp score function,
which is defined as the probability of a successful
grasp, as output by the grasp identification model
described in Section 3. By applying PSO to solve this
optimization problem, we can efficiently search for the
optimal grasp, thereby reducing the computational
cost.

4.3 PSO algorithm
Particle Swarm Optimization (PSO) is a stochastic
optimization technique, first proposed by Eberhart
and Kennedy in 1995, which draws inspiration from
the collective behavior of biological populations, such
as insects, herds, and birds, when foraging for food.
This cooperative search process is characterized by
individual members adapting their strategies based
on their own experiences and those of others. In
the context of optimization, each particle in the
swarm independently searches for the optimal solution
within the search space, marking its current individual
extremum. The swarm then shares these individual
extrema, identifying the optimal one as the current
global optimal solution.
Through this process, each particle adjusts its velocity
and position based on its individual extremum and the
shared global optimal solution, enabling the algorithm
to effectively navigate optimization problems involving
multivariable functions with multiple local optima. By
leveraging the collective intelligence of the swarm, PSO
can efficiently explore the search space, converging
towards the global optimum.
In this study, we use a particle xi to represent a
candidate. Each particle has a velocity vki at iteration k.
The particle’s movement is determined by its current
individual extremum pbesti and the current global
optimal solution gbest. The formulas for updating
particle velocity and position are as follows:

vk+1
i = wvki + c1r1pbesti + c2r2gbest (14)

xk+1
i = xki + vk+1

i (15)

W is the inertia factor. c1 and c2 are accelerating factors.
r1 and r2 are 2 random numbers, which are used for
increasing the randomness of the search. The is shown
in Algortithm 1.

Algorithm 1: PSO Algortithm.
g_fit =0, initial_time =0.
while (g_fit < init) and (initial_time < max_init) do

Randomly initialize particle swarm xi, vi;
Use identification model to caculate score for
xi, vi;
Update p−fiti, g_fit;
initial_time = initial_time +1;

end
while (g_best < prob) and (iteration < max_iter) do

vk+1
i = wvki + c1r1pbesti + c2r2gbest;

xk+1
i = xki + vk+1

i

Use identification model to caculate score for
xi, vi;
Update p−fiti, g−fit;
Update g_besti, g_best;
iteration = iteration +1;

end
Output the best candidate grasp.

In Algorithm 1, g_fit represents the highest score
among all particles, and p_fit represents the highest
score for each individual particle. initial_time is
the number of iterations during initialization, and
iteration is the number of searches. max_init is the
maximum number of initializations, and max_iter is
themaximumnumber of searches. init is theminimum
threshold that g_fit must meet during initialization,
and prob is the minimum threshold that g_fit must
meet during searching. This candidate estimator
allows us to quickly find a good grasp.
The iterative convergence process of particles is
illustrated in Figure 9. Initially, particles are randomly
distributed within the image. As the algorithm
iterates, the particles gradually converge towards the
optimal location. Notably, particles that exceed the
image boundaries during initialization or iteration are
eliminated and replacedwith new randomly generated
particles. The convergence condition is met when
either the maximum number of iterations is reached
or the global optimal particle adaptation value reaches
the specified threshold.
By making a small adjustment to the candidate
estimator, it can output particles whose scores exceed

49

IECE Transactions on Intelligent Unmanned Systems

Figure 9. PSO iteration process. The first behavior of the
image is the current global best position, and the second

behavior is the current position of all particles.

a certain threshold and are ranked high among all
particles. This modification allows us to identify
multiple grasp points simultaneously.

4.4 Improvements to PSO
To ensure the PSO algorithm converges faster, we
impose certain constraints on the particles during
initialization and iteration. Firstly, we aim to distribute
particles as close to the object as possible. Therefore,
when initializing particles, we position them within
the center of the image, ensuring that at least one
particle has a score greater than 0.7. Secondly, before
initializing the particles, we generate a histogram
of the gray image corresponding to the RGB image.
This histogram helps us roughly estimate the size
of the target object. Based on this estimate, we
initialize the particles differently according to the
target object’s size. This ensures the particles are
appropriately sized, reducing the effect of improper
particle size on particle score, thereby accelerating
the algorithm’s convergence. Lastly, we constrain the
size, aspect ratio, and area of the particles to a specific
range. If a particle falls outside these limits during
initialization or iteration, we adjust the particle size
back to a reasonable range by multiplying it with a
corresponding correction factor.

5 Experiment and Evaluation
5.1 The cornell grasp detection dataset
The dataset comprises 885 images featuring 400
objects across 240 different categories, along with their
corresponding grasp labels. This dataset is specifically
designed for parallel grippers. Each image includes
multiple grasp labels that are comprehensive and
varied in terms of orientation, location, and scale.

However, it does not encompass all possible grasps.
Additionally, there are some errors in the labeling of
both positive and negative samples. Despite these
shortcomings, the dataset provides excellent examples
of grasps. Therefore, we have chosen to analyze and
evaluate our approach based on this dataset.

5.2 Image preprocessing
Before inputting the image into the identification
model, we preprocess it by cropping the original image
to focus on the center of the object, maintaining a size of
300×300pixels. To ensure comparabilitywith previous
work, we then scale the image down to 224×224 pixels.
For the grasp identification model, we horizontally
align the rectangular image along its long axis, fill the
top and bottom ends with 0 pixels, and scale the image
to 24 × 24 pixels before inputting it into the model.
Prior to training, we perform necessary augmentations
on the training set, including translation, scaling, and
rotation.

5.3 The grasp identification model
Before inputting the feature image into the model, we
preprocess it by scaling it to 24× 24 pixels and filling it
accordingly. This allows us to input the preprocessed
feature image directly into the model.
Our identification model outputs in the form
of probabilities, specifically the classification
probabilities from the softmax layer regarding the
graspable features (see Fig. 10).

Figure 10. The output of the identification model.

If we use direct classification, as seen in the third
example in Fig. 10, the model will classify it as
graspable because the output is 0.617, which is greater
than 0.5. Since the model only outputs probabilities,
this does not impact subsequent iterations. Therefore,
we do not directly evaluate models based on their
accuracy alone; instead, the probability output serves
as a reference for selecting the identification model.

5.4 Multigrasp detection approach
We have made a slight modification to the original
method. Instead of outputting only the highest-scoring

50

IECE Transactions on Intelligent Unmanned Systems

grasp, we now output several of the highest-scoring
grasps simultaneously. These grasps converge on
different positions of the target object, providing
multiple ways to grasp the same object.

5.5 Grasp evaluation
When evaluating on the Cornell Grasp Detection
Dataset, two different evaluation criteria have been
used. The first approach is point evaluation, which
determines the success of the predicted grasp by
judging whether the distance between the center of
the predicted grasp point and the center of the labeled
point is below a certain threshold. This evaluation
criterion has been widely discussed. The main issue
with this criterion is that it does not consider the
size and angle of the grasp. Additionally, previous
work has seldom disclosed the thresholds used for
evaluation comparisons, making it difficult to compare
results. Therefore, we do not use this evaluation
criterion.

The second approach is rectangle evaluation, which
considers the entire grasp rectangle. According to
this criterion, a grasp is deemed correct if it meets
the following two conditions:

The angle between the predicted grasp and the labeled
grasp does not exceed 30°.

The intersection ratio between the predicted grasp and
the labeled grasp is at least 20

In our work, we use the second approach to evaluate
the model. Although this method is more appropriate
for evaluation, it still has some limitations. For instance,
some predicted grasps may not meet the above two
criteria but are still actually feasible grasps (see Fig.
11).

Figure 11. The first line is the grasps labeled by the dataset,
and the second line is the result of our detection. Take the

results of column 1 and column 4 from the left in the
picture as an example. Although they do not meet the
requirements of rectangle evaluation, it can still be

considered to be graspable.

6 Results and Comparisons
We tested our model on a computer with a single
CPU (i9-9900k 3.6GHz), a single GPU (NVIDIA
1080Ti), and 16 gigabytes of memory. According to
the evaluation criteria outlined in Part III, our model
achieved excellent results on the Cornell dataset.

6.1 Comparison of different approaches
We compared the accuracy of our method with the
results of previous experiments on the Cornell dataset
(as shown in Table 1). Our approach achieved a
success rate of 92.8%. While our success rate is only
slightly lower than that achieved by Guo et al. [12],
it represents a significant improvement over existing
two-stage methods, increasing the success rate by 11
percentage points. In terms of speed, our algorithm

Table 1. We compare our approach with the previous work.

Algorithm Accuracy(%)
Jiang et al. [11] 60.5%
Lenz et al. [1] 73.9%
Wang et al. [9] 81.8%

Redmon et al. [4] 88.0%
Asif et al. [2] 88.2%

Kumra et al. [3] 89.2%
Guo et al. [12] 93.2%

Ours 92.8%

requires 378ms to process an image. Although our
method is still slower than one-stage methods, it is
capable of running in real-time.

6.2 The result of multigrasp
Previously, we mentioned that with a small
modification to our method, we could obtain
multiple grasp points at once, providing several
solutions for grasping an object. We conducted
relevant experiments to validate this, and the results
are shown in Fig. 12. The figure demonstrates that the
multigrasp method provides multiple correct grasps
for each target object. We also compiled statistics on
the success rate and time consumption (see Table 2).
In the evaluation of multigrasp detection, if at least
one predicted grasp candidate of an image meets the
requirements, the detection of grasp points for that
image is considered successful. The results indicate
that the multigrasp method has a higher success rate
compared to the original method, with only a slight
increase in average time consumption by 5ms.

51

IECE Transactions on Intelligent Unmanned Systems

Figure 12. The result of the multigrasp approach.

Table 2. Comparison between mutligrasp method and
original method.

Accuracy(%) Average time (ms)
Original 92.8% 378ms

Mutligrasp 94.8% 383ms

6.3 Summary
We demonstrate that deep learning models can
effectively learn grasping features and that the
PSO optimization algorithm can successfully address
the issue of multiple local optima. By using a
straightforward network, we significantly reduce
computational costs, making the model easy to train
and deploy. We transform the detection problem
into an optimization problem, thereby reducing
dependency on labeled data and allowing for multiple
possibilities in the entire state space. The PSO
algorithm excels in handling multivariable complex
function optimization problems with multiple local
optima, offering low computational complexity, fast
convergence, and the ability to find better solutions
in a reasonable amount of time. By combining
deep network learning characteristics with the PSO
optimization algorithm for grasp detection, we achieve
advanced results efficiently.

7 The Experiment on the Robot
7.1 The introduction of the experiment
After achieving successful results on the lab computer,
we decided to test our approach on a real robot. The
process is as follows (see Fig. 13): First, we selected six
objects that were not present in the dataset. Next, we
used the watershed algorithm to process the original
images captured by the robot’s camera, extracting the
target objects and placing them in the same position on
a light white background image. Finally, we applied
our method to detect the grasp points on the images
obtained in the previous step and drew the grasp
regions on the original images.

Figure 13. The process of experiment on the robot.

7.2 Result and discussion
We applied our method to detect the grasp points on
the robot and obtained the following results (see Fig.
14). While there are no significant differences in the
types of objects we selected compared to those in the
Cornell dataset, there are notable differences in detail.
However, these differences did not significantly impact
our detection results. Among the six selected objects,
the predicted graspswere correct for all except the pink
plastic blocks in the second row and the first column.
This demonstrates that our detection approach can be
effectively used on the robot and achieve good results
with unfamiliar objects, provided that the objects in the
dataset belong to the same category as the unfamiliar
ones.
In practical applications, we can accurately label a
few typical objects within the same category, which
will help achieve effective grasp detection for most
objects in that category. This approach reduces the
number of objects required in the dataset, facilitating
the application of our method in real-world detection
scenarios.

Figure 14. The result of the single grasp detection.

8 Conclusion
In this article, we present a robotic grasp detection
approach that combines deep learning with the PSO
algorithm. We transform the detection problem into
an optimization problem. Initially, a CNN is employed

52

IECE Transactions on Intelligent Unmanned Systems

to learn graspable features. Subsequently, the
identification model is treated as the objective function
for optimization, the entire image is considered the
state space, and the parameters of the rectangle
identification points are used as variables. The PSO
algorithm is then applied to solve the optimization
problem. Our algorithm achieves top-tier accuracy on
the Cornell Grasp Detection Dataset. Additionally, our
approach is two-stage, which, compared to end-to-end
methods, requires less accuracy from the model and
dataset, enhancing its practical usability.
For future work, we aim to improve the speed and
robustness of the algorithm to achieve better results in
real industrial deployments.

Conflicts of Interest
The authors declare that they have no conflicts of
interest.

Acknowledgement
This work was supported without any funding.

References
[1] Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning

for detecting robotic grasps. The International Journal
of Robotics Research, 34(4-5), 705-724. [CrossRef]

[2] Asif, U., Bennamoun, M., & Sohel, F. A. (2017).
RGB-D object recognition and grasp detection using
hierarchical cascaded forests. IEEE Transactions on
Robotics, 33(3), 547-564. [CrossRef]

[3] Kumra, S., & Kanan, C. (2017, September). Robotic
grasp detection using deep convolutional neural
networks. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 769-776).
[CrossRef]

[4] Redmon, J., & Angelova, A. (2015, May). Real-time
grasp detection using convolutional neural networks.
In 2015 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 1316-1322).[CrossRef]

[5] Bicchi, A., & Kumar, V. (2000, April). Robotic grasping
and contact: A review. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065) (Vol. 1, pp. 348-353). [CrossRef]

[6] Miller, A. T., & Allen, P. K. (2004). Graspit! a
versatile simulator for robotic grasping. IEEE Robotics
& Automation Magazine, 11(4), 110-122.[CrossRef]

[7] Miller, A. T., Knoop, S., Christensen, H. I., &Allen, P. K.
(2003, September). Automatic grasp planning using
shape primitives. In 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422) (Vol.
2, pp. 1824-1829). [CrossRef]

[8] Pelossof, R., Miller, A., Allen, P., & Jebara, T.
(2004, April). An SVM learning approach to robotic
grasping. In IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004 (Vol.
4, pp. 3512-3518). [CrossRef]

[9] Wang, Z., Li, Z., Wang, B., & Liu, H. (2016). Robot
grasp detection using multimodal deep convolutional
neural networks. Advances in Mechanical Engineering,
8(9), 1687814016668077. [CrossRef]

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classificationwith deep convolutional neural
networks. Advances in neural information processing
systems, 25, 1097-1105. [CrossRef]

[11] Jiang, Y., Moseson, S., & Saxena, A. (2011, May).
Efficient grasping from rgbd images: Learning
using a new rectangle representation. In 2011 IEEE
International conference on robotics and automation (pp.
3304-3311). [CrossRef]

[12] Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., &
Xi, N. (2017, May). A hybrid deep architecture for
robotic grasp detection. In 2017 IEEE International
Conference on Robotics and Automation (ICRA) (pp.
1609-1614).[CrossRef]

[13] Wang, N., Fang, F., & Feng, M. (2014, May).
Multi-objective optimal analysis of comfort and energy
management for intelligent buildings. In The 26th
Chinese control and decision conference (2014 CCDC) (pp.
2783-2788). IEEE.[CrossRef]

[14] Fang, F., & Wu, X. (2020). A win–win mode: The
complementary and coexistence of 5G networks and
edge computing. IEEE Internet of Things Journal, 8(6),
3983-4003.[CrossRef]

[15] Lv, Y., Fang, F. A. N. G., Yang, T., & Romero,
C. E. (2020). An early fault detection method for
induced draft fans based on MSET with informative
memory matrix selection. ISA transactions, 102,
325-334.[CrossRef]

[16] Fang, F., Jizhen, L., & Wen, T. (2004).
Nonlinear internal model control for the
boiler-turbine coordinate systems of power
unit. PROCEEDINGS-CHINESE SOCIETY OF
ELECTRICAL ENGINEERING, 24(4), 195-199.

[17] Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of
coordinated controllers for boiler-turbine units. Acta
Automatica Sinica, 31(2), 291-296.

[18] Wang, Y., Deng, J., Fang, Y., Li, H., & Li,
X. (2017). Resilience-aware frequency tuning for
neural-network-based approximate computing chips.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(10), 2736-2748. [CrossRef]

53

https://journals.sagepub.com/doi/abs/10.1177/0278364914549607
https://ieeexplore.ieee.org/abstract/document/7820198/
https://ieeexplore.ieee.org/abstract/document/8202237/
https://ieeexplore.ieee.org/abstract/document/7139361/
https://ieeexplore.ieee.org/abstract/document/844081/
https://ieeexplore.ieee.org/abstract/document/1371616/
https://ieeexplore.ieee.org/abstract/document/1241860/
https://ieeexplore.ieee.org/abstract/document/1308797/
https://journals.sagepub.com/doi/abs/10.1177/1687814016668077
http://kr.nvidia.com/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
https://ieeexplore.ieee.org/abstract/document/5980145/
https://ieeexplore.ieee.org/abstract/document/7989191/
https://doi.org/10.1109/CCDC.2014.6852646
https://doi.org/10.1109/JIOT.2020.3009821
https://doi.org/10.1016/j.isatra.2020.02.018
https://doi.org/10.1109/TVLSI.2017.2682885

IECE Transactions on Intelligent Unmanned Systems

Zhe Chu is an undergraduate at Northwestern
Polytechnical University. He came to
Northwestern Polytechnical University in 2017.
He is a member of the soccer robot base at
Northwestern Polytechnical University. He is
interested in robotics,machine learning and
computer vision.

Mengkai Hu received the bachelor’s degree
in electronics and information engineering
from Northwestern Polytechnical University
in 2017. And he recieved his master’s degree
from Peking University in 2020. His research
focus on signal processing.

XiangyuChen received the B.E. degree and the
M.E. degree from Northwestern Polytechnical
University, Xi’an, China, in 2017 and 2020.
Currently he is a research assistant in Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Science. His research focus on
robotics, deep learning and computer vision.

54

	Introduction
	Related Work
	Identification Model
	Simplified AlexNet model
	Original GraspingNet model
	Final GraspingNet model
	Convolution layer
	GAP layer
	Output layer
	Model training

	Identification Model
	Five-dimensional representation
	Optimizing Grasp Detection using Particle Swarm Optimization
	PSO algorithm
	Improvements to PSO

	Experiment and Evaluation
	The cornell grasp detection dataset
	Image preprocessing
	The grasp identification model
	Multigrasp detection approach
	Grasp evaluation

	Results and Comparisons
	Comparison of different approaches
	The result of multigrasp
	Summary

	The Experiment on the Robot
	The introduction of the experiment
	Result and discussion

	Conclusion
	Zhe Chu
	Mengkai Hu
	Xiangyu Chen

