Author
Contributions by role
Author 2
Salman Khan
Codeninja Consulting, Lahore
Summary
Edited Journals
IECE Contributions

Free Access | Research Article | 25 March 2025
Comparative Analysis of Automated Knee Osteoarthritis Severity Classification from X-Ray Images Using CNNs and VGG16 Architecture
IECE Transactions on Sensing, Communication, and Control | Volume 2, Issue 1: 36-47, 2025 | DOI:10.62762/TSCC.2025.378503
Abstract
Osteoarthritis (OA) is a degenerative joint disease that primarily affects the knee, causing cartilage deterioration and discomfort. Early diagnosis is crucial for effective management, as it can slow disease progression and improve the quality of life. This study proposes a deep learning approach to automatically classify knee OA severity from X-ray images using Convolutional Neural Networks (CNNs) and the VGG16 model. The models were trained on a dataset of knee X-ray images, and performance was evaluated using accuracy, precision, recall, and F1-score. The proposed CNNs model achieved 99% training accuracy and 80% testing accuracy after 50 epochs, while the VGG16 model, after fine-tuning... More >

Graphical Abstract
Comparative Analysis of Automated Knee Osteoarthritis Severity Classification from X-Ray Images Using CNNs and VGG16 Architecture

Free Access | Research Article | 05 March 2025
Attention-Guided Wheat Disease Recognition Network through Multi-Scale Feature Optimization
IECE Transactions on Sensing, Communication, and Control | Volume 2, Issue 1: 11-24, 2025 | DOI:10.62762/TSCC.2025.435806
Abstract
Accurate and timely detection of wheat diseases remains crucial for sustainable agriculture, particularly in major wheat-producing regions. Wheat diseases pose a significant threat to global food security, need precise and timely detection to promote sustainable agriculture. Existing approaches consistently employ single-scale features with shallow-layered convolutional neural networks (CNNs). To bridge the research gaps, we introduce a novel Multi-Scale Wheat Disease Network (MSWDNet) with feature collaboration for wheat disease recognition supported by a comprehensive dataset collected from wheat fields. This study fills research gaps by introducing a novel technique to improve detection a... More >

Graphical Abstract
Attention-Guided Wheat Disease Recognition Network through Multi-Scale Feature Optimization