Inam Ullah (Member, IEEE) received a B.Sc. degree in Electrical Engineering (Telecommunication) from the Department of Electrical Engineering, University of Science and Technology Bannu (USTB), KPK, Pakistan, in 2016 and a Master's and Ph.D. degree in Information and Communication Engineering from the College of Internet of Things (IoT) Engineering, Hohai University (HHU), Changzhou Campus, 213022, China, in 2018 and 2022, respectively. He has completed his postdoc with Brain Korea 2021 (BK21) at the Chungbuk Information Technology Education and Research Center, Chungbuk National University, Cheongju 28644, S Korea, in March 2023. He is currently an Assistant Professor at the Department of Computer Engineering, Gachon University, S Korea. His research interests include Robotics, Internet of Things (IoT), Wireless Sensor Networks (WSNs), Underwater Communication and Localization, Underwater Sensor Networks (USNs), Artificial Intelligence (AI), Big data, Deep learning, etc. He has authored more than 100 peer-reviewed articles on various research topics. He is a TPC member of ACM RACS 2023, Poland, August 6-10, 2023, and IEEE ICC'24 - SAC-10, Denver, CO, USA), 2024. He served as Guest Editors for various journals such as Computers in Human Behavior, Sensors, Electronics, Journal of Marine Science and Engineering, Frontiers in Sensors, Artificial Intelligence and Applications, etc. He is the reviewer of many prominent journals, including IEEE Transactions on Industrial Informatics KSII Transactions on Internet & Information Systems, IEEE Transactions on Vehicular Technology, IEEE Transactions on Intelligent Transportation Systems, Transactions on Sustainable Computing, IEEE ACCESS, Sustainable Energy Technologies and Assessments, Future Generation Computer Systems (FGCS), Computers and Electrical Engineering (Elsevier), Internet of Things (IoT) Journal, Digital Communications & Networks (Elsevier), Springer Nature, Wireless Communication & Mobile Computing (WCMC), Alexandria Engineering Journal Sensors, Electronics, Remote Sensing, Applied Sciences, Computational Intelligence and Neurosciences, etc.
His awards and honors include the Best Student Award from the University of Science and Technology Bannu (USTB), KPK, Pakistan, in 2015 and the Prime Minister Laptop Scheme Award from the University of Science and Technology Bannu (USTB), KPK, Pakistan, in April 2015. Top-10 students award of the College of Internet of Things (IoT) Engineering, Hohai University, China in June 2019, Top-100 students award of Hohai University (HHU), China in June 2019, Jiangsu Province Distinguish International Students award (30,000 RMB) in 2019-2020, Certificate of Recognition from Hohai University (HHU), China in 2021 & 2022 both, Top-100 students award of Hohai University (HHU), China in May 2022, Top-10 Outstanding Students Award, Hohai University (HHU), China in June 2022, and Distinguished Alumni Award from University of Science and Technology Bannu (USTB), KPK, Pakistan in Oct. 2022.
The challenge of accurately estimating effort for software development projects is critical for project managers (PM) and researchers. A common issue they encounter is missing data values in datasets, which complicates effort estimation (EE). While several models have been introduced to address this issue, none have proven entirely effective. The Analogy-Based Effort Estimation (ABEE) model is the most widely used approach, relying on historical data for estimation. However, the common practice of deleting cases or cells with missing observations results in a reduction of statistical power and negatively impacts the performance of ABEE, leading to inefficiencies and biases. This study employ... More >
Graphical Abstract
Free Access
|
Research Article
| 20 September 2024
| Cited: 2
This paper proposes designing and structuring a Cyber-Physical System (CPS) with a specific focus on vehicles equipped with on-board diagnosis (OBD-II). The purpose of the CPS is to collect and assess data pertaining to the vehicle's Electronic Control Unit (ECU), such as engine RPM, speed, and other relevant parameters. The OBD-II scanner utilizes the obtained data on mass airflow (MAF) and vehicle speed to compute CO2 gas emissions and fuel consumption. The data is wirelessly communicated using a GSM module to a Semantic Web. The CPS also uses GPS tracking to ascertain the vehicle's whereabouts. A Semantic Web is utilized to construct a database management system that stores and manages se... More >
Our website uses cookies that are essential for its operation and additional cookies to track performance, or to improve and personalize our services. By clicking "Allow all cookies", you agree to the storing of cookies on your device. For more information on how we use cookies, please see our Cookie Policy.