IECE Transactions on Intelligent Systematics

Publishing Model:
ISSN:
  ISSN:  2998-3355 (online)  |  2998-3320 (print)
Indexing: Google Scholar, Dimensions, Lens, ResearchGate, OpenAlex, WorldCat
IECE Transactions on Intelligent Systematics is a peer-reviewed international academic journal reflecting the achievements of cutting-edge research and application of intelligent systems, mainly publishing academic papers in the fields of intelligent control systems.
E-mail:[email protected]  DOI Prefix: 10.62762/TIS
1.44
Impact Factor (Google)
-
CiteScore

Recent Articles

Free Access | Review Article | 16 January 2025
A Comprehensive Survey on UAV-based Data Gathering Techniques in Wireless Sensor Networks
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 66-75, 2025 | DOI:10.62762/TIS.2025.790920
Abstract
In the recent era of communication, wireless sensor networks (WSNs) emerged as a demanding area of study due to their communication capacity especially in the application of Internet of things (IoT). As the breadth and range of networks expand quickly, it becomes necessary to sense, transmit, and interpret the massive amount of data in IoT devices. WSN becomes even more beneficial and popular among the researchers when it integrates with unmanned aerial vehicles (UAVs) to increase the life span and establish a reliable communication between itself and Network Control Centre in an efficient way. Memory problems and network data transmission processing times are also addressed by this integrat... More >

Graphical Abstract
A Comprehensive Survey on UAV-based Data Gathering Techniques in Wireless Sensor Networks

Free Access | Review Article | 04 January 2025
Futuristic Metaverse: Security and Counter Measures
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 49-65, 2025 | DOI:10.62762/TIS.2024.194631
Abstract
This paper presents a comprehensive analysis of the security and privacy challenges in the Metaverse, introducing a novel framework for evaluating and addressing these emerging threats. Our research makes three key contributions: (1) a systematic classification of Metaverse-specific security vulnerabilities across interconnected virtual and physical environments, (2) a framework for assessing privacy risks in AR/VR-enabled social interactions, and (3) targeted solutions for securing blockchain-based digital assets and identity management in the Metaverse. Our analysis highlights how traditional cybersecurity approaches must evolve to address the unique challenges posed by the fusion of physi... More >

Graphical Abstract
Futuristic Metaverse: Security and Counter Measures

Free Access | Review Article | 04 January 2025
A Machine Learning-Based Scientometric Evaluation for Fake News Detection
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 38-48, 2025 | DOI:10.62762/TIS.2024.564569
Abstract
In the modern world, disseminating false information is a problem that must be addressed, and algorithms based on machine learning are used to spot and stop the spread of incorrect information. Due to the current unregulated development of false news fabrication and dissemination, democracy is continuously under threat. Fake news may mislead individuals while influencing them because of its persuasiveness and life sciences. Using data from the Web of Science, this study undertakes a bibliometric analysis of research on the application of machine learning for fake news identification. The research underscores the need for a streamlined approach to analyze data exclusively from the Web of Scie... More >

Graphical Abstract
A Machine Learning-Based Scientometric Evaluation for Fake News Detection

Free Access | Research Article | 31 December 2024
Feature Fusion for Performance Enhancement of Text Independent Speaker Identification
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 27-37, 2024 | DOI:10.62762/TIS.2024.649374
Abstract
Speaker identification systems have gained significant attention due to their potential applications in security and personalized systems. This study evaluates the performance of various time and frequency domain physical features for text-independent speaker identification. Specifically, four key features—pitch, intensity, spectral flux, and spectral slope—were examined along with their statistical variations (minimum, maximum, and average values). These features were fused with log power spectral features and trained using a Convolutional Neural Network (CNN). The goal was to identify the most effective feature combinations for improving speaker identification accuracy. The experimenta... More >

Graphical Abstract
Feature Fusion for Performance Enhancement of Text Independent Speaker Identification

Free Access | Research Article | 27 December 2024
Advancing Robotic Automation with Custom Sequential Deep CNN-Based Indoor Scene Recognition
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 14-26, 2024 | DOI:10.62762/TIS.2025.613103
Abstract
Indoor scene recognition poses considerable hurdles, especially in cluttered and visually analogous settings. Although several current recognition systems perform well in outside settings, there is a distinct necessity for enhanced precision in inside scene detection, particularly for robotics and automation applications. This research presents a revolutionary deep Convolutional Neural Network (CNN) model tailored with bespoke parameters to improve indoor picture comprehension. Our proprietary dataset consists of seven unique interior scene types, and our deep CNN model is trained to attain excellent accuracy in classification tasks. The model exhibited exceptional performance, achieving a t... More >

Graphical Abstract
Advancing Robotic Automation with Custom Sequential Deep CNN-Based Indoor Scene Recognition

Free Access | Research Article | 22 December 2024
Electronic Health Records-Based Data-Driven Diabetes Knowledge Unveiling and Risk Prognosis
IECE Transactions on Intelligent Systematics | Volume 2, Issue 1: 1-13, 2024 | DOI:10.62762/TIS.2025.367320
Abstract
In the healthcare sector, the application of deep learning technologies has revolutionized data analysis and disease forecasting. This is particularly evident in the field of diabetes, where the deep analysis of Electronic Health Records (EHR) has unlocked new opportunities for early detection and effective intervention strategies. Our research presents an innovative model that synergizes the capabilities of Bidirectional Long Short-Term Memory Networks-Conditional Random Field (BiLSTM-CRF) with a fusion of XGBoost and Logistic Regression. This model is designed to enhance the accuracy of diabetes risk prediction by conducting an in-depth analysis of electronic medical records data. The fir... More >

Graphical Abstract
Electronic Health Records-Based Data-Driven Diabetes Knowledge Unveiling and Risk Prognosis

Free Access | Research Article | 12 December 2024
Enhancing Fake News Detection with a Hybrid NLP-Machine Learning Framework
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 203-214, 2024 | DOI:10.62762/TIS.2024.461943
Abstract
The increasing prevalence of fake news on social media has become a significant challenge in today’s digital landscape. This paper proposes a hybrid framework for fake news detection, combining Natural Language Processing (NLP) techniques and machine learning algorithms. Using Term Frequency-Inverse Document Frequency (TF-IDF) for feature extraction, and classifiers such as Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machines (SVM), the model integrates Maximum Likelihood Estimation (MLE) with Logistic Regression to achieve 95% accuracy and 93% precision on a Kaggle dataset. The results highlight the potential of combining statistical and NLP approaches to improve fake... More >

Graphical Abstract
Enhancing Fake News Detection with a Hybrid NLP-Machine Learning Framework

Free Access | Research Article | 12 November 2024
Improving Effort Estimation Accuracy in Software Development Projects Using Multiple Imputation Techniques for Missing Data Handling
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 190-202, 2024 | DOI:10.62762/TIS.2024.751418
Abstract
The challenge of accurately estimating effort for software development projects is critical for project managers (PM) and researchers. A common issue they encounter is missing data values in datasets, which complicates effort estimation (EE). While several models have been introduced to address this issue, none have proven entirely effective. The Analogy-Based Effort Estimation (ABEE) model is the most widely used approach, relying on historical data for estimation. However, the common practice of deleting cases or cells with missing observations results in a reduction of statistical power and negatively impacts the performance of ABEE, leading to inefficiencies and biases. This study employ... More >

Graphical Abstract
Improving Effort Estimation Accuracy in Software Development Projects Using Multiple Imputation Techniques for Missing Data Handling

Free Access | Review Article | 09 November 2024 | Cited: 1
Comprehensive Evaluation of Artificial Intelligence Applications in Forensic Odontology: A Systematic Review and Meta-Analysis
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 176-189, 2024 | DOI:10.62762/TIS.2024.818917
Abstract
This systematic review and meta-analysis examine the transformative impact of artificial intelligence (AI) applications on forensic odontology, specifically focusing on the enhancement of identification accuracy and operational efficiency. Traditionally, forensic odontology depends on detailed dental records for human identification purposes. However, with the integration of AI-driven advancements, including machine learning algorithms and image recognition systems, the field is undergoing significant evolution. These AI technologies offer notable improvements in the precision of complex tasks such as bite mark analysis, dental age estimation, and dental record matching, while simultaneously... More >

Graphical Abstract
Comprehensive Evaluation of Artificial Intelligence Applications in Forensic Odontology: A Systematic Review and Meta-Analysis

Free Access | Research Article | 09 November 2024
In-depth Urdu Sentiment Analysis Through Multilingual BERT and Supervised Learning Approaches
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 161-175, 2024 | DOI:10.62762/TIS.2024.585616
Abstract
Sentiment analysis is the process of identifying and categorizing opinions expressed in a piece of text. It has been extensively studied for languages like English and Chinese but still needs to be explored for languages such as Urdu and Hindi. This paper presents an in-depth analysis of Urdu text using state-of-the-art supervised learning techniques and a transformer-based technique. We manually annotated and preprocessed the dataset from various Urdu blog websites to categorize the sentiments into positive, neutral, and negative classes. We utilize five machine learning classifiers: Support Vector Machine (SVM), K-nearest neighbor (KNN), Naive Bayes, Multinomial Logistic Regression (MLR),... More >

Graphical Abstract
In-depth Urdu Sentiment Analysis Through Multilingual BERT and Supervised Learning Approaches

Free Access | Research Article | 29 October 2024
Enhancing Ocular Health Precision: Cataract Detection Using Fundus Images and ResNet-50
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 145-160, 2024 | DOI:10.62762/TIS.2024.640345
Abstract
Cataracts are a leading cause of blindness in Pakistan, contributing to more than 54% of cases due to poor living condition, nutritional deficiencies, and limited healthcare access. Early detection is critical to avoid invasive treatments,but current diagnostic approaches often identify cataracts at advanced stages. This paper presents an advanced,automated cataract detection system using deep learning specifically the ResNet-50 architecture, to address this gap. The model processes fundus retinal images curated from diverse datasets, classified by ophthalmologic experts through a rigorous three-stage process. By leveraging the ResNet-50 model, cataracts are categorized into normal,moderate,... More >

Graphical Abstract
Enhancing Ocular Health Precision: Cataract Detection Using Fundus Images and ResNet-50

Free Access | Review Article | 21 October 2024
Transforming Industry 4.0 Security: Analysis of ABE and ABA Technologies
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 127-144, 2024 | DOI:10.62762/TIS.2024.993235
Abstract
The sharing of data and private information has been greatly improved by Industry 4.0's broad usage of cloud technologies. In their quest to improve their services, many firms have made automation and effective authentication a priority. As a result, in Industry 4.0, Attribute-Based Encryption (ABE) and Attribute-Based Authentication (ABA) have established themselves as dependable models for data sharing across cloud environments. For difficult situations like fine-grained access control and secure authentication, these models offer practical answers. Organizations can utilize ABA to specifically authenticate people based on their attributes, ensuring appropriate and safe access to critical... More >

Graphical Abstract
Transforming Industry 4.0 Security: Analysis of ABE and ABA Technologies

Free Access | Research Article | 20 October 2024 | Cited: 1
Comparison of Deep Learning Algorithms for Retail Sales Forecasting
IECE Transactions on Intelligent Systematics | Volume 1, Issue 3: 112-126, 2024 | DOI:10.62762/TIS.2024.300700
Abstract
We investigate the use of deep learning models for retail sales predictions in this research. Having a proper sales forecasting can lead to optimization in inventory management, marketing strategies, and other core business operations. This research proposed to assess deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Multilayer Perceptron and hybrid CNN-LSTM model. The models are further improved by using some dense layers to embed daily sales data from the biggest pharmaceutical firm in the study. Models are then trained on 80% of the dataset and tested on remaining 20%. The accuracy of the proposed research is compared using evaluation metrics... More >

Graphical Abstract
Comparison of Deep Learning Algorithms for Retail Sales Forecasting

Free Access | Research Article | 29 September 2024
Investigation on the Mechanism of Nebulized Droplet Particle Size Impact in Precision Plant Protection
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 102-111, 2024 | DOI:10.62762/TIS.2024.307219
Abstract
Precision plant protection, a crucial facet of precision agriculture, assumes a paramount role throughout diverse stages of agricultural pesticide utilization. It not only furnishes indispensable reference parameters for agricultural production but also minimizes the employment of pesticides and their environmental footprint. This investigation employs a laser particle size analyzer to gauge the particle size information of the atomization field under assorted conditions, commencing with ground plant protection. The findings reveal that particle size escalates with the ascent of spray pressure and spray angle while diminishing with their augmentation. It proposes that pressure adjustments ca... More >

Graphical Abstract
Investigation on the Mechanism of Nebulized Droplet Particle Size Impact in Precision Plant Protection

Free Access | Research Article | 29 September 2024
On-line Configuration Identification and Control of Modular Reconfigurable Flight Array
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 91-101, 2024 | DOI:10.62762/TIS.2024.681878
Abstract
With the increasing complexity of the working environment and the diversification of mission requirements of UAVs, traditional UAVs have a fixed structure and single function. It is difficult to be applied in occasions with complex environments and changing load demands. The modular reconfigurable flight array (MRFA) is composed of no less than four isomorphic unit modules that are freely spliced together. By adding or removing flight unit modules and adjusting the arrangement of flight unit modules, the configuration of the MRFA can be changed, so that it can adapt to complex environments and then complete different flight missions. In the process of MRFA research and development, online co... More >

Graphical Abstract
On-line Configuration Identification and Control of Modular Reconfigurable Flight Array

Free Access | Research Article | 27 September 2024 | Cited: 1
Long-term Traffic Flow Prediction using Stochastic Configuration Networks for Smart Cities
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 79-90, 2024 | DOI:10.62762/TIS.2024.952592
Abstract
Accurate predictions of traffic flow are very meaningful to city managers. With such information, traffic systems can better coordinate traffic signals and reduce congestion. By understanding traffic patterns, navigation systems can provide real-time routing suggestions that avoid traffic jams, save time, and reduce fuel consumption. However, traffic flow will be interfered with by multiple factors such as collection time and place. In this paper, we propose to use stochastic configuration networks (SCNs) to predict the traffic flow. The network is trained through stepwise construction, and the network parameters are effectively optimized based on the approximation theorem and convergence an... More >

Graphical Abstract
Long-term Traffic Flow Prediction using Stochastic Configuration Networks for Smart Cities

Free Access | Research Article | 23 September 2024
Signal Strength-Based Alien Drone Detection and Containment in Indoor UAV Swarm Simulations
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 69-78, 2024 | DOI:10.62762/TIS.2024.807714
Abstract
A Novel simulation framework using self-governing drones is used to locate and reduce unauthorized drones in interior environments. The recommended method uses Received Signal Strength Indicator (RSSI) to identify an alien agent drone, which has different signal characteristics than the approved swarm of UAVs. Real-time threat detection is possible with this technology. After detecting the drone, the swarm organizes itself to encircle and besiege it for 10 seconds, making it inert before returning to their original positions. This unique solution uses RSSI to quickly identify and mitigate enclosed area concerns. It provides a reliable and effective indoor drone security solution. The simulat... More >

Graphical Abstract
Signal Strength-Based Alien Drone Detection and Containment in Indoor UAV Swarm Simulations

Free Access | Review Article | 23 September 2024
Modeling Brain Functional Networks Using Graph Neural Networks: A Review and Clinical Application
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 58-68, 2024 | DOI:10.62762/TIS.2024.680959
Abstract
The integration of graph neural networks (GNNs) with brain functional network analysis is an emerging field that combines neuroscience and machine learning to enhance our understanding of complex brain dynamics. We first briefly introduce the fundamentals of brain functional networks, followed by an overview of Graph Neural Network principles and architectures. The review then focuses on the applications of these networks and address current challenges in the field, such as the need for interpretable models and effective integration of multi-modal neuroimaging data. We also highlight the potential of GNNs in clinical perimenopausal areas such as perimenopausal depression research, demonstrat... More >

Graphical Abstract
Modeling Brain Functional Networks Using Graph Neural Networks: A Review and Clinical Application

Free Access | Research Article | 20 September 2024 | Cited: 2
A Cyber-Physical System Based on On-Board Diagnosis (OBD-II) for Smart City
IECE Transactions on Intelligent Systematics | Volume 1, Issue 2: 49-57, 2024 | DOI:10.62762/TIS.2024.329126
Abstract
This paper proposes designing and structuring a Cyber-Physical System (CPS) with a specific focus on vehicles equipped with on-board diagnosis (OBD-II). The purpose of the CPS is to collect and assess data pertaining to the vehicle's Electronic Control Unit (ECU), such as engine RPM, speed, and other relevant parameters. The OBD-II scanner utilizes the obtained data on mass airflow (MAF) and vehicle speed to compute CO2 gas emissions and fuel consumption. The data is wirelessly communicated using a GSM module to a Semantic Web. The CPS also uses GPS tracking to ascertain the vehicle's whereabouts. A Semantic Web is utilized to construct a database management system that stores and manages se... More >

Graphical Abstract
A Cyber-Physical System Based on On-Board Diagnosis (OBD-II) for Smart City

Free Access | Research Article | 29 May 2024 | Cited: 8
Parameter Adaptive Non-Model-Based State Estimation Combining Attention Mechanism and LSTM
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 40-48, 2024 | DOI:10.62762/TIS.2024.137329
Abstract
Nowadays, state estimation is widely used in fields such as autonomous driving and drone navigation. However, in practical applications, it is difficult to obtain accurate target motion models and noise covariance.This leads to a decrease in the estimation accuracy of traditional Kalman filters. To address this issue, this paper proposes an adaptive model free state estimation method based on attention parameter learning module. This method combines Transformer's encoder with Long Short Term Memory Network (LSTM), and obtains the system's operational characteristics through offline learning of measurement data without modeling the system dynamics and measurement characteristics. In addition,... More >

Graphical Abstract
Parameter Adaptive Non-Model-Based State Estimation Combining Attention Mechanism and LSTM

Free Access | Research Article | 27 May 2024 | Cited: 5
YOLOv7-Bw: A Dense Small Object Efficient Detector Based on Remote Sensing Image
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 30-39, 2024 | DOI:10.62762/TIS.2024.137321
Abstract
In recent years, deep learning techniques have been increasingly applied to the detection of remote sensing images. However, the substantial size variation and dense distribution of objects in these images present significant challenges to detection algorithms. Current methods often suffer from low efficiency, missed detections, and inaccurate bounding boxes. To address these issues, this paper presents an improved YOLO algorithm, YOLOv7-bw, designed for efficient remote sensing image detection, thereby advancing object detection applications in the remote sensing industry. YOLOv7-bw enhances the original SPPCSPC pooling pyramid network by incorporating a Bi-level Routing Attention module, w... More >

Graphical Abstract
YOLOv7-Bw: A Dense Small Object Efficient Detector Based on Remote Sensing Image

Free Access | Research Article | Feature Paper | 26 May 2024
Pedestrian Trajectory Reconstruction for Indoor Movement Based on Foot-Mounted IMU
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 19-29, 2024 | DOI:10.62762/TIS.2024.136995
Abstract
A pedestrian navigation system (PNS) that only relies on the foot-mounted IMU is useful for various applications, especially under some severe conditions, such as tracking of firefighters and miners. Due to the complexity of the indoor environment, signal occlusion problems could lead to the failure of certain positioning methods. In complex environments such as fire rescue and emergency rescue, the barometric altimeter fails because of the influence of air pressure and temperature. This paper used an improved zero velocity detection algorithm to improve the accuracy of gait detection. Then, combine the Kalman filter with the zero velocity update algorithm to recognize gait accurately and ta... More >

Graphical Abstract
Pedestrian Trajectory Reconstruction for Indoor Movement Based on Foot-Mounted IMU

Free Access | Research Article | 25 May 2024 | Cited: 4
Deep Prediction Network Based on Covariance Intersection Fusion for Sensor Data
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 10-18, 2024 | DOI:10.62762/TIS.2024.136898
Abstract
To predict future trends based on the data from sensors is an important technology for many applications, such as the Internet of Things, smart cities, etc. Based on the predicted results, further decisions and system controls can be made. Raw sensor data sets are often complex non-linear data with noise, which results in the difficulty of accurate prediction. This paper proposes a distributed deep prediction network based on a covariance intersection (CI) fusion algorithm in which the deep learning networks, such as long-term and short-term memory networks (LSTM) and gated recurrent unit networks (GRU) are fused by CI fusion algorithm to effectively develop the performance of prediction. Mo... More >

Graphical Abstract
Deep Prediction Network Based on Covariance Intersection Fusion for Sensor Data

Free Access | Research Article | 15 May 2024 | Cited: 3
Visual Feature Extraction and Tracking Method Based on Corner Flow Detection
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 3-9, 2024 | DOI:10.62762/TIS.2024.136895
Abstract
Frontend feature tracking based on vision is the process in which a robot captures images of its surrounding environment using a camera while in motion. Each frame of the image is then analyzed to extract feature points, which are subsequently matched between pairwise frames to estimate the robot’s pose changes by solving for the variations in these points. While feature matching methods that rely on descriptor-based approaches perform well in cases of significant lighting and texture variations, the addition of descriptors increases computational costs and introduces instability. Therefore, in this paper, a novel approach is proposed that combines sparse optical flow tracking with Shi-Tom... More >

Graphical Abstract
Visual Feature Extraction and Tracking Method Based on Corner Flow Detection

Open Access | Editorial | 17 April 2024
Editorial: Intelligent Systematics: A New Transactions
IECE Transactions on Intelligent Systematics | Volume 1, Issue 1: 1-2, 2024 | DOI:10.62762/TIS.2024.100001
Abstract
Presents information on the new IECE Transactions on Intelligent Systematics. More >
Journal Statistics
99
Authors
14
Author Distribution (Countries/Regions)
25
Articles
36
Citations
2024
Published Since
0
Special Issues
35285
Article Views
3711
Article Downloads
IECE Transactions on Intelligent Systematics

IECE Transactions on Intelligent Systematics

eISSN: 2998-3355 | pISSN: 2998-3320

Email: [email protected]

Crossref

Crossref

Member of Crossref
https://www.crossref.org

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc. All rights reserved.