-
CiteScore
-
Impact Factor
Volume 1, Issue 1, International Journal of Intelligent Signal Processing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Wassim Alexan
Wassim Alexan
German University in Cairo, Egypt
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
International Journal of Intelligent Signal Processing, 2025, Volume 1, Issue 1: 1-10

Open Access | Editorial | 18 February 2025
Intelligent Signal Processing: A New Era of Innovation and Discovery
1 Communications Department, Faculty of Information Engineering and Technology, German University in Cairo, 11835 Cairo, Egypt
2 Mathematics Department, German International University (GIU), New Administrative Capital, Cairo 13507, Egypt
* Corresponding Author: Wassim Alexan, [email protected]
Received: 17 February 2025, Accepted: 17 February 2025, Published: 18 February 2025  
Abstract
This inaugural editorial of the International Journal of Intelligent Signal Processing (IJISP) highlights the integration of artificial intelligence (AI), machine learning (ML), and traditional signal processing, transforming fields such as biomedical diagnostics, cybersecurity, autonomous systems, and communications. Despite advances, challenges such as data scarcity, computational complexity, model interpretability, and ethical concerns persist. IJISP aims to address these through high-impact research, interdisciplinary collaboration, and real-world applications. This issue explores emerging trends, including deep learning, edge AI, quantum computing, and privacy-preserving models, while emphasizing scientific rigor, transparency, and reproducibility in its editorial process. AI-driven techniques are enhancing efficiency and accuracy, yet challenges in robustness, fairness, and scalability remain. The journal calls for interdisciplinary research, open-access data sharing, and industry-academia partnerships to advance the field. Committed to scientific excellence, ethical AI, and practical impact, IJISP invites contributions that push the boundaries of intelligent signal processing.

Keywords
adaptive signal processing
artificial intelligence (AI)
communications
cybersecurity
data-driven signal processing
machine learning (ML)
intelligent signal processing

Funding
This work was not supported by any funding.

Cite This Article
APA Style
Alexan, W. (2025). Intelligent Signal Processing: A New Era of Innovation and Discovery. International Journal of Intelligent Signal Processing, 1(1), 1–10. https://doi.org/10.62762/IJISP.2025.413034

References
  1. Zhang, J., Lu, W., Xing, C., Zhao, N., Al-Dhahir, N., Karagiannidis, G. K., & Yang, X. (2025). Intelligent integrated sensing and communication: a survey. Science China Information Sciences, 68(3), 1-42.
    [CrossRef]   [Google Scholar]
  2. Alexan, W., Aly, L., Korayem, Y., Gabr, M., El-Damak, D., Fathy, A., & Mansour, H. A. (2024). Secure Communication of Military Reconnaissance Images Over UAV-Assisted Relay Networks. IEEE Access.
    [CrossRef]   [Google Scholar]
  3. Kodmalwar, P., Maheshwari, A., Palav, M. R., Priya, S., Purusothaman, N., & Namdeo, A. K. (2025). Real-Time Fraud Detection Using AI and Signal Processing. In Role of Internet of Everything (IOE), VLSI Architecture, and AI in Real-Time Systems (pp. 121-136). IGI Global Scientific Publishing.
    [CrossRef]   [Google Scholar]
  4. Dash, M., & Raj, R. (2025). Optimum Detection of Human Genome Related to Cancer Cells Using Signal Processing. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 309-320.
    [CrossRef]   [Google Scholar]
  5. Sharma, R., & Meena, H. K. (2024). Emerging Trends in EEG Signal Processing: A Systematic Review. SN Computer Science, 5(4), 1-14.
    [CrossRef]   [Google Scholar]
  6. Hayes, B., Shier, J., Fazekas, G., McPherson, A., & Saitis, C. (2024). A review of differentiable digital signal processing for music and speech synthesis. Frontiers in Signal Processing, 3, 1284100.
    [CrossRef]   [Google Scholar]
  7. Liu, F., Lu, Z., & Lin, X. (2025). Vision-based environmental perception for autonomous driving. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 239(1), 39-69.
    [CrossRef]   [Google Scholar]
  8. Alexan, W., Mamdouh, E., Aboshousha, A., Alsahafi, Y. S., Gabr, M., & Hosny, K. M. (2024). Stegocrypt: A robust tri‐stage spatial steganography algorithm using TLM encryption and DNA coding for securing digital images. IET Image Processing, 18(13), 4189-4206.
    [CrossRef]   [Google Scholar]
  9. Menagadevi, M., Madian, N., Thiyagarajan, D., & Rajendran, R. (2025). Smart medical devices: making healthcare more intelligent. In Machine Learning Models and Architectures for Biomedical Signal Processing (pp. 487-501). Academic Press.
    [CrossRef]   [Google Scholar]
  10. Moysis, L., Iliadis, L. A., Sotiroudis, S. P., Boursianis, A. D., Papadopoulou, M. S., Kokkinidis, K. I. D., ... & Goudos, S. K. (2023). Music deep learning: deep learning methods for music signal processing—a review of the state-of-the-art. IEEE Access, 11, 17031-17052.
    [CrossRef]   [Google Scholar]
  11. Momen-Tayefeh, M., Momen-Tayefeh, M., Ghahramani, S. A. G., & Hemmatyar, A. M. A. (2025). Channel estimation for Massive MIMO systems aided by intelligent reflecting surface using semi-super resolution GAN. Signal Processing, 227, 109710.
    [CrossRef]   [Google Scholar]
  12. Manzour, M. A., Elias, C. M., Morgan, E. I., & Shehata, O. M. (2024). Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control. IEEE Transactions on Intelligent Transportation Systems.
    [CrossRef]   [Google Scholar]
  13. Zeng, Y., Liao, B., Li, Z., Hua, C., & Li, S. (2024). A comprehensive review of recent advances on intelligence algorithms and information engineering applications. IEEE Access.
    [CrossRef]   [Google Scholar]
  14. Urina-Triana, M. A., Piñeres-Melo, M. A., Mantilla-Morrón, M., Butt-Aziz, S., Galeano, L., Naz, S., & Ariza-Colpas, P. P. (2024). Machine Learning and AI Approaches for Analyzing Diabetic and Hypertensive Retinopathy in Ocular Images: A Literature Review. IEEE Access.
    [CrossRef]   [Google Scholar]
  15. Khang, A., Hahanov, V., Litvinova, E., Chumachenko, S., Avromovic, Z., İsmibeyli, R., ... & Anh, P. T. N. (2024). Medical and Biomedical Signal Processing and Prediction Using the EEG Machine and Electroencephalography. In Computer Vision and AI-Integrated IoT Technologies in the Medical Ecosystem (pp. 109-124). CRC Press.
    [Google Scholar]
  16. Kamal, H., & Mashaly, M. (2025). Enhanced Hybrid Deep Learning Models-Based Anomaly Detection Method for Two-Stage Binary and Multi-Class Classification of Attacks in Intrusion Detection Systems. Algorithms, 18(2), 69.
    [CrossRef]   [Google Scholar]
  17. Qiu, H., Chen, Z., Chen, Y., Yang, C., Wu, S., Li, F., & Xie, L. (2024). A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-sEMG and In-Sensor Computing. IEEE Journal of Biomedical and Health Informatics.
    [CrossRef]   [Google Scholar]
  18. Zhou, S., Sun, J., Xu, K., & Wang, G. (2024). AI-Driven Data Processing and Decision Optimization in IoT through Edge Computing and Cloud Architecture. Journal of AI-Powered Medical Innovations (International online ISSN 3078-1930), 2(1), 64-92.
    [Google Scholar]
  19. Dong, Y., Lin, L., Ni, H., & Wang, J. (2024). Infinite quantum signal processing. Quantum, 8, 1558.
    [CrossRef]   [Google Scholar]
  20. Imran, M., Altamimi, A. B., Khan, W., Hussain, S., & Alsaffar, M. (2024). Quantum Cryptography for Future Networks Security: A Systematic Review. IEEE Access.
    [CrossRef]   [Google Scholar]
  21. Akinola, T., Li, X., Wilkins, R., Obiomon, P., & Qian, L. (2023, May). Inverse Quantum Fourier Transform Inspired Algorithm for Unsupervised Image Segmentation. In 2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 501-508). IEEE.
    [CrossRef]   [Google Scholar]
  22. Hussain, I., & Jany, R. (2024). Interpreting stroke-impaired electromyography patterns through explainable artificial intelligence. Sensors, 24(5), 1392.
    [CrossRef]   [Google Scholar]
  23. Adel, M., El Ramly, S., & Abdelhamid, B. (2024). Adaptive Transmission Based On Polar Code And Hierarchical Modulation For Future Wireless Communications. IEEE Access.
    [CrossRef]   [Google Scholar]
  24. Shammaa, M., Mashaly, M., & El-mahdy, A. (2024). The Use of Deep Learning Techniques in OFDM Receivers for 5G NR: A Survey. Procedia Computer Science, 231, 32-39.
    [CrossRef]   [Google Scholar]
  25. Tera, S. P., Chinthaginjala, R., Pau, G., & Kim, T. H. (2024). Towards 6G: An Overview of the Next Generation of Intelligent Network Connectivity. IEEE Access.
    [CrossRef]   [Google Scholar]
  26. Qureshi, H. N., Masood, U., Manalastas, M., Zaidi, S. M. A., Farooq, H., Forgeat, J., ... & Imran, A. (2023). Toward Addressing Training Data Scarcity Challenge in Emerging Radio Access Networks: A Survey and Framework. IEEE Communications Surveys & Tutorials, 25(3), 1954-1990.
    [CrossRef]   [Google Scholar]
  27. Cui, W., Fu, X., Liu, S., Gu, M., Liu, X., Wu, J., & King, I. (2024, December). Data Augmentation Techniques for Chinese Disease Name Normalization. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3134-3137). IEEE.
    [CrossRef]   [Google Scholar]
  28. Archana, R., & Jeevaraj, P. E. (2024). Deep learning models for digital image processing: a review. Artificial Intelligence Review, 57(1), 11.
    [CrossRef]   [Google Scholar]
  29. El-Sharkawy, M., Wael, M., Mashaly, M., & Azab, E. (2024). Re-configurable parallel Feed-Forward Neural Network implementation using FPGA. Integration, 97, 102176.
    [CrossRef]   [Google Scholar]
  30. Kim, H., Park, J., Choi, Y., & Lee, J. (2024). Fantastic robustness measures: the secrets of robust generalization. Advances in Neural Information Processing Systems, 36.
    [Google Scholar]
  31. van Assen, M., Beecy, A., Gershon, G., Newsome, J., Trivedi, H., & Gichoya, J. (2024). Implications of bias in artificial intelligence: considerations for cardiovascular imaging. Current Atherosclerosis Reports, 26(4), 91-102.
    [CrossRef]   [Google Scholar]
  32. Liu, W., You, L., Shao, Y., Shen, X., Hu, G., Shi, J., & Gao, S. (2025). From accuracy to approximation: A survey on approximate homomorphic encryption and its applications. Computer Science Review, 55, 100689.
    [CrossRef]   [Google Scholar]
  33. Su, G., Wang, J., Xu, X., Wang, Y., & Wang, C. (2024). The Utilization of Homomorphic Encryption Technology Grounded on Artificial Intelligence for Privacy Preservation. International Journal of Computer Science and Information Technology, 2(1), 52-58.
    [CrossRef]   [Google Scholar]

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 174
PDF Downloads: 83

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
International Journal of Intelligent Signal Processing

International Journal of Intelligent Signal Processing

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.