-
CiteScore
-
Impact Factor
Volume 1, Issue 1, IECE Transactions on Neural Computing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Munir Ahmad
Munir Ahmad
Korea University, Republic of Korea
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Neural Computing, Volume 1, Issue 1, 2025: 1-10

Open Access | Editorial | 17 March 2025
Neural Computing: A New Era of Intelligent Adaptation and Learning
1 University College, Korea University, Seoul 02841, Republic of Korea
* Corresponding Author: Munir Ahmad, [email protected]
Received: 24 February 2025, Accepted: 26 February 2025, Published: 17 March 2025  
Abstract
The inaugural editorial of the IECE Transactions on Neural Computing (IECE-TNC) presents the revolutionary influence of neural computing that incorporates artificial intelligence (AI), machine learning (ML), and next-gen computation models in cognitive systems, robotics, and healthcare. Although there have been tremendous developments, some problems remain including computational scalability, model interpretability, ethical considerations, and data security. IECE-TNC is dedicated to resolving these issues by facilitating high-impact research, interdisciplinary collaboration, and real-world applications. The magazine covers the following trends such as federated learning, explainable deep learning models, and neuromorphic computing while emphasizing transparency, reproducibility, and ethical AI practices. Simultaneously with the advantage of neural computing in terms of adaptability and efficiency, addressing the challenges of robustness, fairness, and sustainability remain critical. The journal requires consistent innovation, open-access collaboration, and industry-academia partnerships to push this area of study forward. IECE-TNC is dedicated to achieving the highest standards of research and technological advances, and we welcome the most innovative contributions that are capable of taking the field of neural computing to new heights.

Keywords
neural computing
artificial intelligence (AI)
machine learning (ML)
neuromorphic computing
brain-inspired AI
cognitive systems
federated learning
explainable AI (XAI)
deep learning
ethical AI
computational neuroscience

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The author declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Parthasarathy, R., & Bhowmik, R. T. (2021). Quantum optical convolutional neural network: a novel image recognition framework for quantum computing. IEEE Access, 9, 103337-103346.
    [CrossRef]   [Google Scholar]
  2. Zhang, W., Yan, J., Shi, W., Feng, T., & Deng, D. (2017). Refining deep convolutional features for improving fine-grained image recognition. EURASIP Journal on Image and Video Processing, 2017, 1-10.
    [CrossRef]   [Google Scholar]
  3. Adeyemi, V. A., Tlelo-Cuautle, E., Perez-Pinal, F. J., & Nuñez-Perez, J. C. (2022). Optimizing the maximum Lyapunov exponent of fractional order chaotic spherical system by evolutionary algorithms. Fractal and Fractional, 6(8), 448.
    [CrossRef]   [Google Scholar]
  4. Vignali, R., Zurla, R., Pasotti, M., Rolandi, P. L., Singh, A., Gallo, M. Le, Sebastian, A., Jang, T., Antolini, A., Scarselli, E. F., & Cabrini, A. (2024). Designing Circuits for AiMC Based on Non-Volatile Memories: A Tutorial Brief on Trade-Off and Strategies for ADCs and DACs Co-Design. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(3), 1650-1655.
    [CrossRef]   [Google Scholar]
  5. Richter, O., Wu, C., Whatley, A. M., Köstinger, G., Nielsen, C., Qiao, N., & Indiveri, G. (2024). DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous spiking neural network processor. Neuromorphic Computing and Engineering, 4(1), 014003.
    [CrossRef]   [Google Scholar]
  6. Wang, Z., Nie, F., Zhang, C., Wang, R., & Li, X. (2021). Joint nonlinear feature selection and continuous values regression network. Pattern Recognition Letters, 150, 197-206.
    [CrossRef]   [Google Scholar]
  7. Yar, H., Hussain, T., Agarwal, M., Khan, Z. A., Gupta, S. K., & Baik, S. W. (2022). Optimized dual fire attention network and medium-scale fire classification benchmark. IEEE Transactions on Image Processing, 31, 6331-6343.
    [CrossRef]   [Google Scholar]
  8. Ni, J., Young, T., Pandelea, V., Xue, F., & Cambria, E. (2023). Recent advances in deep learning based dialogue systems: A systematic survey. Artificial intelligence review, 56(4), 3055-3155.
    [CrossRef]   [Google Scholar]
  9. Rech, P. (2024). Artificial Neural Networks for Space and Safety-Critical Applications: Reliability Issues and Potential Solutions. IEEE Transactions on Nuclear Science, 71(4), 377-404.
    [CrossRef]   [Google Scholar]
  10. Halužan Vasle, A., & Moškon, M. (2024). Synthetic biological neural networks: From current implementations to future perspectives. BioSystems, 105164.
    [CrossRef]   [Google Scholar]
  11. Sun, Z., Zhou, X., & Li, G. (2023). Learned index: A comprehensive experimental evaluation. Proceedings of the VLDB Endowment, 16(8), 1992-2004.
    [CrossRef]   [Google Scholar]
  12. Widjaja, D., Fustian, T., Lucky, H., & Suhartono, D. (2022, September). Performance Comparison of Improved Common Sequence to Sequence Paraphrasing Models. In 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS) (pp. 299-304). IEEE.
    [CrossRef]   [Google Scholar]
  13. Jebali, F., Majumdar, A., Turck, C., Harabi, K. E., Faye, M. C., Muhr, E., Walder, J. P., Bilousov, O., Michaud, A., Vianello, E., Hirtzlin, T., Andrieu, F., Bocquet, M., Collin, S., Querlioz, D., & Portal, J. M. (2024). Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell. Nature Communications, 15(1), 741.
    [CrossRef]   [Google Scholar]
  14. Dhanaraj, R. S., & Sridevi, M. (2024). Building a Robust and Efficient Defensive System Using Hybrid Adversarial Attack. IEEE Transactions on Artificial Intelligence.
    [CrossRef]   [Google Scholar]
  15. Hu, H., & Li, C. (2023). Smart tourism products and services design based on user experience under the background of big data. Soft Computing, 27(17), 12711-12724.
    [CrossRef]   [Google Scholar]
  16. Sharma, B., Sharma, L., Lal, C., & Roy, S. (2024). Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach. Expert Systems with Applications, 238, 121751.
    [CrossRef]   [Google Scholar]
  17. Shinde, R., Patil, S., Kotecha, K., Potdar, V., Selvachandran, G., & Abraham, A. (2024). Securing AI-based healthcare systems using blockchain technology: A state-of-the-art systematic literature review and future research directions. Transactions on Emerging Telecommunications Technologies, 35(1), e4884.
    [CrossRef]   [Google Scholar]
  18. Bekbolatova, M., Mayer, J., Ong, C. W., & Toma, M. (2024). Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Switzerland), 12(2), 125.
    [CrossRef]   [Google Scholar]
  19. Pennisi, M., Proietto Salanitri, F., Bellitto, G., Casella, B., Aldinucci, M., Palazzo, S., & Spampinato, C. (2024). FedER: Federated Learning through Experience Replay and privacy-preserving data synthesis. Computer Vision and Image Understanding, 238, 103882.
    [CrossRef]   [Google Scholar]
  20. Li, J., Shang, B., Jayawardana, I., & Chen, G. (2023). Hardware-in-the-loop and Digital Twin Enabled Autonomous Robotics-assisted Environment Inspection. 2023 6th International Symposium on Autonomous Systems, ISAS 2023.
    [CrossRef]   [Google Scholar]
  21. Hong, Y. Y., Rioflorido, C. L. P. P., & Zhang, W. (2024). Hybrid deep learning and quantum-inspired neural network for day-ahead spatiotemporal wind speed forecasting. Expert Systems with Applications, 241, 122645.
    [CrossRef]   [Google Scholar]
  22. Zhou, M.-G., Liu, Z.-P., Yin, H.-L., Li, C.-L., Xu, T.-K., & Chen, Z.-B. (2023). Quantum Neural Network for Quantum Neural Computing. Research, 6, 0134.
    [CrossRef]   [Google Scholar]
  23. Aguirre, F., Sebastian, A., Le Gallo, M., Song, W., Wang, T., Yang, J. J., Lu, W., Chang, M. F., Ielmini, D., Yang, Y., Mehonic, A., Kenyon, A., Villena, M. A., Roldán, J. B., Wu, Y., Hsu, H. H., Raghavan, N., Suñé, J., Miranda, E., … Lanza, M. (2024). Hardware implementation of memristor-based artificial neural networks. Nature Communications, 15(1), 1974.
    [CrossRef]   [Google Scholar]
  24. Bassi, P. R. A. S., Dertkigil, S. S. J., & Cavalli, A. (2024). Improving deep neural network generalization and robustness to background bias via layer-wise relevance propagation optimization. Nature Communications, 15(1), 291.
    [CrossRef]   [Google Scholar]
  25. Kumar, D., Liu, Y., Song, H., & Namilae, S. (2024). Explainable deep neural network for in-plain defect detection during additive manufacturing. Rapid Prototyping Journal, 30(1), 49-59.
    [CrossRef]   [Google Scholar]
  26. Guan, F., Zhu, T., Zhou, W., & Choo, K. K. R. (2024). Graph neural networks: a survey on the links between privacy and security. Artificial Intelligence Review, 57(2), 40.
    [CrossRef]   [Google Scholar]
  27. Çakıt, E., & Karwowski, W. (2024). Soft computing applications in the field of human factors and ergonomics: A review of the past decade of research. Applied Ergonomics, 114, 104132.
    [CrossRef]   [Google Scholar]
  28. Khare, S. K., Blanes-Vidal, V., Nadimi, E. S., & Acharya, U. R. (2024). Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations. Information fusion, 102, 102019.
    [CrossRef]   [Google Scholar]
  29. Lee, K. F., & Fermann, M. E. (2024). Supercontinuum neural network and analog computing evaluation. Physical Review A, 109(3), 033521.
    [CrossRef]   [Google Scholar]
  30. Faroughi, S. A., Pawar, N. M., Fernandes, C., Raissi, M., Das, S., Kalantari, N. K., & Kourosh Mahjour, S. (2024). Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics. Journal of Computing and Information Science in Engineering, 24(4), 040802.
    [CrossRef]   [Google Scholar]
  31. Liu, F., Zheng, H., Ma, S., Zhang, W., Liu, X., Chua, Y., ... & Zhao, R. (2024). Advancing brain-inspired computing with hybrid neural networks. National Science Review, 11(5), nwae066.
    [CrossRef]   [Google Scholar]
  32. Chakravarthy, V. J., Kothuri, S. R., Rajesh, K., Halima, R., Jagtap, M. T., & Saibaba, C. H. M. H. (2024). Artificial Intelligence (AI) Enabled Image Upscaler for Retinal Anomaly Detection with Dense Neural Computation. International Journal of Intelligent Systems and Applications in Engineering, 12(2s).
    [Google Scholar]
  33. Garg, S., Mahajan, N., & Ghosh, J. (2023). Artificial intelligence and its impacts on industry 4.0. Industry 4.0 and the Digital Transformation of International Business, 123-133.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Ahmad, M. (2025). Neural Computing: A New Era of Intelligent Adaptation and Learning. IECE Transactions on Neural Computing, 1(1), 1–10. https://doi.org/10.62762/TNC.2025.125800

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 378
PDF Downloads: 223

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
IECE Transactions on Neural Computing

IECE Transactions on Neural Computing

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.