IECE Transactions on Internet of Things
ISSN: 2996-9298 (Online)
Email: [email protected]
[1] Yang, X., Lu, R., Choo, K. K. R., Yin, F., & Tang, X. (2017). Achieving efficient and privacy-preserving cross-domain big data deduplication in cloud. IEEE Transactions on Big Data, 8(1), 73-84.
[2] Wu, X., Hauptmann, A. G., & Ngo, C. W. (2007, September). Practical elimination of near-duplicates from web video search. In Proceedings of the 15th ACM international conference on Multimedia (pp. 218-227).
[3] Yao, J. Y., & Liu, G. (2018). Bitrate-based no-reference video quality assessment combining the visual perception of video contents. IEEE Transactions on Broadcasting, 65(3), 546-557.
[4] Botia Valderrama, D. J. L., & Gaviria Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016(1), 1730814.
[5] Søgaard, J., Forchhammer, S., & Korhonen, J. (2015, May). Video quality assessment and machine learning: Performance and interpretability. In 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.
[6] Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010, February). A subjective study to evaluate video quality assessment algorithms. In Human Vision and Electronic Imaging XV (Vol. 7527, pp. 128-137). SPIE.
[7] Saad, M. A., Bovik, A. C., & Charrier, C. (2014). Blind prediction of natural video quality. IEEE Transactions on image Processing, 23(3), 1352-1365.
[8] Mittal, A., Soundararajan, R., & Bovik, A. C. (2012). Making a “completely blind” image quality analyzer. IEEE Signal processing letters, 20(3), 209-212.
[9] Loh, W. T., & Bong, D. B. L. (2018). A just noticeable difference-based video quality assessment method with low computational complexity. Sensing and Imaging, 19, 1-20.
[10] Cheng, Z., Ding, L., Huang, W., Yang, F., & Qian, L. (2017, June). A unified QoE prediction framework for HEVC encoded video streaming over wireless networks. In 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1-6). IEEE.
[11] Anegekuh, L., Sun, L., Jammeh, E., Mkwawa, I. H., & Ifeachor, E. (2015). Content-based video quality prediction for HEVC encoded videos streamed over packet networks. IEEE Transactions on Multimedia, 17(8), 1323-1334.
[12] Alreshoodi, M., Adeyemi-Ejeye, A. O., Woods, J., & Walker, S. D. (2015). Fuzzy logic inference system-based hybrid quality prediction model for wireless 4kUHD H. 265-coded video streaming. IET Networks, 4(6), 296-303.
[13] Zhang, Y., Gao, X., He, L., Lu, W., & He, R. (2018). Blind video quality assessment with weakly supervised learning and resampling strategy. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2244-2255.
[14] Valderrama, J. F. B., & Valderrama, D. J. L. B. (2018). On LAMDA clustering method based on typicality degree and intuitionistic fuzzy sets. Expert Systems with Applications, 107, 196-221.
[15] Li, Y., Po, L. M., Cheung, C. H., Xu, X., Feng, L., Yuan, F., & Cheung, K. W. (2015). No-reference video quality assessment with 3D shearlet transform and convolutional neural networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(6), 1044-1057.
[16] Agarla, M., Celona, L., & Schettini, R. (2020). No-reference quality assessment of in-capture distorted videos. Journal of Imaging, 6(8), 74.
[17] Nightingale, J., Salva-Garcia, P., Calero, J. M. A., & Wang, Q. (2018). 5G-QoE: QoE modelling for ultra-HD video streaming in 5G networks. IEEE Transactions on Broadcasting, 64(2), 621-634.
[18] Narwaria, M., & Lin, W. (2011, September). Machine learning based modeling of spatial and temporal factors for video quality assessment. In 2011 18th IEEE International Conference on Image Processing (pp. 2513-2516). IEEE.
[19] Pal, D., & Vanijja, V. (2017). A No-Reference Modular Video Quality Prediction Model for H. 265/HEVC and VP9 Codecs on a Mobile Device. Advances in Multimedia, 2017(1), 8317590.
[20] Qian, L., Pan, T., Zheng, Y., Zhang, J., Li, M., Yu, B., & Wang, B. (2020). No-Reference Nonuniform Distorted Video Quality Assessment Based on Deep Multiple Instance Learning. IEEE MultiMedia, 28(1), 28-37.
[21] Chen, P., Li, L., Ma, L., Wu, J., & Shi, G. (2020, October). RIRNet: Recurrent-in-recurrent network for video quality assessment. In Proceedings of the 28th ACM international conference on multimedia (pp. 834-842).
[22] Li, D., Jiang, T., & Jiang, M. (2021). Unified quality assessment of in-the-wild videos with mixed datasets training. International Journal of Computer Vision, 129(4), 1238-1257.
[23] Zhen, P., Chen, H. B., Cheng, Y., Ji, Z., Liu, B., & Yu, H. (2021). Fast video facial expression recognition by a deeply tensor-compressed LSTM neural network for mobile devices. ACM Transactions on Internet of Things, 2(4), 1-26.
[24] Wang, N., Fang, F., & Feng, M. (2014, May). Multi-objective optimal analysis of comfort and energy management for intelligent buildings. In The 26th Chinese control and decision conference (2014 CCDC) (pp. 2783-2788). IEEE.
[25] Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of coordinated controllers for boiler-turbine units. Acta Automatica Sinica, 31(2), 291-296.
[26] Fang, F., Jizhen, L., & Wen, T. (2004). Nonlinear internal model control for the boiler-turbine coordinate systems of power unit. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, 24(4), 195-199.
[27] Lv, Y., Fang, F. A. N. G., Yang, T., & Romero, C. E. (2020). An early fault detection method for induced draft fans based on MSET with informative memory matrix selection. ISA transactions, 102, 325-334.
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/