-
CiteScore
-
Impact Factor
Volume 1, Issue 1, IECE Journal of Image Analysis and Processing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Xue-Bo Jin
Xue-Bo Jin
Beijing Technology and Business University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Journal of Image Analysis and Processing, Volume 1, Issue 1, 2025: 17-26

Open Access | Research Article | 16 February 2025
Leveraging Machine Learning and Deep Learning for Advanced Malaria Detection Through Blood Cell Images
1 University of Swat, Swat 01923, Pakistan
2 University of Vermont, Burlington, VT 05405, United States
* Corresponding Author: Ijaz Ul Haq, [email protected]
Received: 07 January 2025, Accepted: 11 February 2025, Published: 16 February 2025  
Abstract
Malaria remains a significant global health challenge, causing hundreds of thousands of deaths annually, particularly in tropical and subtropical regions. This study proposes an advanced automated approach for malaria detection by classifying red blood cell images using machine learning and deep learning techniques. Three distinct models: Logistic Regression (LR), Support Vector Machine (SVM), and Inception-V3 were implemented and rigorously evaluated on a dataset comprising 27,558 cell images. The LR model achieved an accuracy of 65.38%, while SVM demonstrated improved classification performance with an accuracy of 84%. The deep learning-based Inception-V3 model outperformed both, achieving a classification accuracy of 94.52% after five training epochs, demonstrating its superior capability to extract intricate features from medical images. These results highlight the effectiveness of deep learning architectures in malaria diagnosis and pave the way for scalable, automated solutions, particularly in resource-limited settings.

Graphical Abstract
Leveraging Machine Learning and Deep Learning for Advanced Malaria Detection Through Blood Cell Images

Keywords
logistic regression
support vector machine
Inception-V3
malaria
classification

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Skorokhod, O., Vostokova, E., & Gilardi, G. (2024). The role of P450 enzymes in malaria and other vector-borne infectious diseases. BioFactors, 50(1), 16-32.
    [CrossRef]   [Google Scholar]
  2. Burke, D. (2021). Health Line Malaria: Causes, Symptoms, and Diagnosis. Healthline. Retrieved from https://www.healthline.com/health/malaria (Accessed: 2024-12-13)
    [Google Scholar]
  3. Baptista, V., Costa, M., Calcada, C., Silva, M., Gil, J., Veiga, M., & Catarino, S. (2021). The future in sensing technologies for malaria surveillance: A review of hemozoin-based diagnosis. ACS Sensors, 6(10), 3898-3911.
    [CrossRef]   [Google Scholar]
  4. World Health Organization. (2021). Malaria. World Health Organization. Retrieved from https://www.who.int/news-room/fact-sheets/detail/malaria (Accessed: 2024-12-16)
    [Google Scholar]
  5. Ross, N., Pritchard, C., Rubin, D., & Duse, A. (2006). Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Medical and Biological Engineering and Computing, 44(5), 427-436.
    [CrossRef]   [Google Scholar]
  6. Moxon, C., Grau, G., & Craig, A. (2011). Malaria: modification of the red blood cell and consequences in the human host. British Journal of Haematology, 154(6), 670-679.
    [CrossRef]   [Google Scholar]
  7. Poostchi, M., Ersoy, I., Bansal, A., Palaniappan, K., Antani, S., Jaeger, S., & Thoma, G. (2015). Image analysis of blood slides for automatic malaria diagnosis. Proceedings of HI-POCT, 15.
    [Google Scholar]
  8. Sawant, S., & Singh, A. (2024). Malaria Cell Detection Using Deep Neural Networks. ArXiv Preprint ArXiv:2406.20005. https://arxiv.org/abs/2406.20005
    [Google Scholar]
  9. Dev, A., Fouda, M. M., Kerby, L., & Fadlullah, Z. M. (2024). Advancing Malaria Identification from Microscopic Blood Smears Using Hybrid Deep Learning Frameworks. IEEE Access.
    [CrossRef]   [Google Scholar]
  10. Mujahid, M., Rustam, F., Shafique, R., Montero, E. C., Alvarado, E. S., de la Torre Diez, I., & Ashraf, I. (2024). Efficient deep learning-based approach for malaria detection using red blood cell smears. Scientific Reports, 14(1), 13249.
    [CrossRef]   [Google Scholar]
  11. Minarno, A., Aripa, L., Azhar, Y., & Munarko, Y. (2023). Classification of malaria cell image using inception-v3 architecture. JOIV: International Journal on Informatics Visualization, 7(2), 273-278. https://dx.doi.org/10.30630/joiv.7.2.1301
    [Google Scholar]
  12. Hoque, M., Islam, M., Khaliluzzaman, M., Al Muntasir, A., & Mohsin, M. (2024). Revolutionizing malaria diagnosis: deep learning-powered detection of parasite-infected red blood cells. International Journal of Electrical and Computer Engineering (IJECE), 14(4), 4518-4530.
    [CrossRef]   [Google Scholar]
  13. Muhammad, S., Iqbal, M., Majeed, S., Saleem, Y., & Tariq, A. (2024). Malaria Cell Classification through Exercising Deep Learning Algorithms. Journal of Computing & Biomedical Informatics, 7, 53-61.
    [Google Scholar]
  14. Delgado-Ortet, M., Molina, A., Alférez, S., Rodellar, J., & Merino, A. (2020). A deep learning approach for segmentation of red blood cell images and malaria detection. Entropy, 22(6), 657.
    [CrossRef]   [Google Scholar]
  15. Kakkar, B., Goyal, M., Johri, P., & Kumar, Y. (2023). Artificial intelligence-based approaches for detection and classification of different classes of malaria parasites using microscopic images: a systematic review. Archives of Computational Methods in Engineering, 30(7), 4781-4800.
    [CrossRef]   [Google Scholar]
  16. Irmak, E. (2021). A Novel Implementation of Deep-Learning Approach on Malaria Parasite Detection from Thin Blood Cell Images. Electrica, 21(2).
    [CrossRef]   [Google Scholar]
  17. Maqsood, A., Farid, M., Khan, M., & Grzegorzek, M. (2021). Deep malaria parasite detection in thin blood smear microscopic images. Applied Sciences, 11(5), 2284.
    [CrossRef]   [Google Scholar]
  18. Hemachandran, K., Alasiry, A., Marzougui, M., Ganie, S., Pise, A., Alouane, M., & Chola, C. (2023). Performance analysis of deep learning algorithms in diagnosis of malaria disease. Diagnostics, 13(3), 534.
    [CrossRef]   [Google Scholar]
  19. Pinkaew, A., Limpiti, T., & Trirat, A. (2015). Automated classification of malaria parasite species on thick blood film using support vector machine. 2015 8th Biomedical Engineering International Conference (BMEiCON), 1-5.
    [CrossRef]   [Google Scholar]
  20. Widodo, S., & Others. (2014). Texture analysis to detect malaria tropica in blood smears image using support vector machine. International Journal of Innovative Research in Advanced Engineering, 1(12), 301-306.
    [Google Scholar]
  21. NIH National Institute of Health Sciences. (2024). Malaria Datasets. Retrieved from https://ceb.nlm.nih.gov/repositories/malaria-datasets/ (Accessed: 2024-12-18)
    [Google Scholar]
  22. Kaggle. (2024). Cell Images for Detecting Malaria. Retrieved from https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria (Accessed: 2024-12-09)
    [Google Scholar]
  23. GeeksforGeeks. (n.d.). Data Preprocessing in Machine Learning. Retrieved from https://www.geeksforgeeks.org/data-preprocessing-machine-learning/
    [Google Scholar]
  24. Scikit-Learn Developers. (2021). Scikit-Learn: Machine Learning in Python. Retrieved from https://scikit-learn.org/stable/ (Version 0.24)
    [Google Scholar]
  25. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer.
    [CrossRef]   [Google Scholar]
  26. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    [CrossRef]   [Google Scholar]
  27. Scholkopf, B., & Smola, A. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
    [Google Scholar]
  28. Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 886-893.
    [CrossRef]   [Google Scholar]
  29. Litjens, G., Kooi, T., Bejnordi, B., Setio, A., Ciompi, F., Ghafoorian, M., & Laak, J. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
    [CrossRef]   [Google Scholar]
  30. Rajaraman, S., Antani, S., Poostchi, M., Silamut, K., Hossain, M., Maude, R., & Thoma, G. (2018). Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ, 6, e4568.
    [CrossRef]   [Google Scholar]
  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818-2826.
    [CrossRef]   [Google Scholar]
  32. Kingma, D., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv Preprint ArXiv:1412.6980. https://arxiv.org/abs/1412.6980
    [Google Scholar]
  33. Tieleman, T., & Hinton, G. (2012). Lecture 6.5—RMSProp: Divide the Gradient by a Running Average of Its Recent Magnitude. Coursera: Neural Networks for Machine Learning.
    [Google Scholar]
  34. Li, W. (2021). Evaluation of left ventricular diastolic function of patients with coronary heart disease by ultrasound images on bilateral filtering image noise reduction algorithm combined with electrocardiogram. Pakistan Journal of Medical Sciences, 37(6), 1699.
    [Google Scholar]
  35. Masud, M., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., Muhammad, G., ... & Shorfuzzaman, M. (2020). Leveraging deep learning techniques for malaria parasite detection using mobile application. Wireless Communications and Mobile Computing, 2020(1), 8895429.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Hamza, M., Ali, I., Ali, S., Khan, W., Shah, S.M., & Haq, I.U. (2025). Leveraging Machine Learning and Deep Learning for Advanced Malaria Detection Through Blood Cell Images. IECE Journal of Image Analysis and Processing, 1(1), 17–26. https://doi.org/10.62762/JIAP.2025.514726

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 183
PDF Downloads: 39

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
IECE Journal of Image Analysis and Processing

IECE Journal of Image Analysis and Processing

ISSN: request pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.