-
CiteScore
1.36
Impact Factor
IECE Transactions on Intelligent Systematics, 2025, Volume 2, Issue 1: 49-65

Free Access | Review Article | 04 January 2025
1 Department of Computer Engineering, Marwadi University, Rajkot, India
2 Department of Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
3 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul, South Korea
* Corresponding Author: Sushil Kumar Singh, [email protected]
Received: 28 October 2024, Accepted: 27 November 2024, Published: 04 January 2025  

Abstract
This paper presents a comprehensive analysis of the security and privacy challenges in the Metaverse, introducing a novel framework for evaluating and addressing these emerging threats. Our research makes three key contributions: (1) a systematic classification of Metaverse-specific security vulnerabilities across interconnected virtual and physical environments, (2) a framework for assessing privacy risks in AR/VR-enabled social interactions, and (3) targeted solutions for securing blockchain-based digital assets and identity management in the Metaverse. Our analysis highlights how traditional cybersecurity approaches must evolve to address the unique challenges posed by the fusion of physical and virtual worlds, immersive 3D environments, and cross-platform interactions. We examine the technological foundations of the Metaverse-including augmented reality (AR), virtual reality (VR), blockchain, and 5G networks-and assess their security implications. Our findings identify critical gaps in current security protocols and propose novel countermeasures for protecting user privacy, securing digital transactions, and maintaining data integrity across virtual environments. This research provides a roadmap for future security implementations in the Metaverse and identifies key areas requiring further investigation.

Graphical Abstract
Futuristic Metaverse: Security and Counter Measures

Keywords
metaverse
security
virtual reality
metaverse security
applications
challenges

Funding
This research was supported by the Research Seed Grant funded by the Marwadi University, Rajkot, Gujrat under grant MU/R&D/22- 23/MRP/FT13.

Cite This Article
APA Style
Ramolia, N., Tank, P. P., Ravikumar, R. N., Zeb, B., Kumar, M., & Kumar, S. K. (2025). Futuristic Metaverse: Security and Counter Measures. IECE Transactions on Intelligent Systematics, 2(1), 49–65. https://doi.org/10.62762/TIS.2024.194631

References
  1. Sun, J., Gan, W., Chao, H. C., & Yu, P. S. (2022). Metaverse: Survey, applications, security, and opportunities. arXiv preprint arXiv:2210.07990.
    [Google Scholar]
  2. Ali, M., Naeem, F., Kaddoum, G., & Hossain, E. (2023). Metaverse communications, networking, security, and applications: Research issues, state-of-the-art, and future directions. IEEE Communications Surveys & Tutorials.
    [Google Scholar]
  3. Bedi, G., Venayagamoorthy, G. K., & Singh, R. (2020). Development of an IoT-driven building environment for prediction of electric energy consumption. IEEE Internet of Things Journal, 7(6), 4912-4921.
    [Google Scholar]
  4. Wang, F. Y., Qin, R., Wang, X., & Hu, B. (2022). Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities. IEEE Transactions on Computational Social Systems, 9(1), 2-7.
    [Google Scholar]
  5. Zhu, H. (2022). MetaAID: A Flexible Framework for Developing Metaverse Applications via AI Technology and Human Editing. arXiv preprint arXiv:2204.01614.
    [Google Scholar]
  6. Rehm, S. V., Goel, L., & Crespi, M. (2015). The metaverse as mediator between technology, trends, and the digital transformation of society and business. Journal For Virtual Worlds Research, 8(2).
    [Google Scholar]
  7. Dionisio, J. D. N., Iii, W. G. B., & Gilbert, R. (2013). 3D virtual worlds and the metaverse: Current status and future possibilities. ACM computing surveys (CSUR), 45(3), 1-38.
    [Google Scholar]
  8. Choi, M., Azzaoui, A. E., Singh, S. K., Salim, M. M., Jeremiah, S. R., & Park, J. H. (2022). The future of metaverse: Security issues, requirements, and solutions. Human-Centric Computing and Information Sciences, 12(60), 1-14.
    [Google Scholar]
  9. Zhan, T., Yin, K., Xiong, J., He, Z., & Wu, S. T. (2020). Augmented reality and virtual reality displays: perspectives and challenges. Iscience, 23(8).
    [Google Scholar]
  10. Di Pietro, R., & Cresci, S. (2021, December). Metaverse: Security and privacy issues. In 2021 third IEEE international conference on trust, privacy and security in intelligent systems and applications (TPS-ISA) (pp. 281-288). IEEE.
    [Google Scholar]
  11. Akour, I. A., Al-Maroof, R. S., Alfaisal, R., & Salloum, S. A. (2022). A conceptual framework for determining metaverse adoption in higher institutions of gulf area: An empirical study using hybrid SEM-ANN approach. Computers and education: artificial intelligence, 3, 100052.
    [Google Scholar]
  12. Díaz, J., Saldaña, C., & Avila, C. (2020). Virtual world as a resource for hybrid education. International Journal of Emerging Technologies in Learning (iJET), 15(15), 94-109.
    [Google Scholar]
  13. Wei, Y., Qin, X., Tan, X., Yu, X., Sun, B., & Zhu, X. (2015, October). The design of a visual tool for the quick customization of virtual characters in OSSL. In 2015 International Conference on Cyberworlds (CW) (pp. 314-320). IEEE.
    [Google Scholar]
  14. Wang, F. Y., Qin, R., Wang, X., & Hu, B. (2022). Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities. IEEE Transactions on Computational Social Systems, 9(1), 2-7.
    [Google Scholar]
  15. Berg, C., Davidson, S., & Potts, J. (2019). Blockchain technology as economic infrastructure: Revisiting the electronic markets hypothesis. Frontiers in Blockchain, 2, 493418.
    [Google Scholar]
  16. Singh, M., Singh, S. K., Kumar, S., Madan, U., & Maan, T. (2021, September). Sustainable framework for metaverse security and privacy: Opportunities and challenges. In International Conference on Cyber Security, Privacy and Networking (pp. 329-340). Cham: Springer International Publishing.
    [Google Scholar]
  17. Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., & Shen, X. (2022). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25(1), 319-352.
    [Google Scholar]
  18. Delgado-Mohatar, O., Fierrez, J., Tolosana, R., & Vera-Rodriguez, R. (2020). Blockchain and biometrics: A first look into opportunities and challenges. In Blockchain and Applications: International Congress (pp. 169-177). Springer International Publishing.
    [Google Scholar]
  19. Kumar, P., Kumar, R., Aloqaily, M., & Islam, A. N. (2023). Explainable AI and blockchain for metaverse: A security, and privacy perspective. IEEE Consumer Electronics Magazine.
    [Google Scholar]
  20. Song, X., Wang, X., Nie, L., He, X., Chen, Z., & Liu, W. (2018, June). A personal privacy preserving framework: I let you know who can see what. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 295-304).
    [Google Scholar]
  21. Chen, Z., Wu, J., Gan, W., & Qi, Z. (2022, December). Metaverse security and privacy: An overview. In 2022 IEEE International Conference on Big Data (Big Data) (pp. 2950-2959). IEEE.
    [Google Scholar]
  22. Concept, Content and Context Cheng, S. (2023). Metaverse Security. In (pp. 145-163). Cham: Metaverse: Springer Nature Switzerland.
    [Google Scholar]
  23. Wu, H., & Zhang, W. (2023). Digital identity, privacy security, and their legal safeguards in the Metaverse. Security and Safety, 2, 2023011.
    [Google Scholar]
  24. Shrivastava, R., Mishra, D. K., & Jain, A. (2011, October). Security at Physical Layer in Wireless Communication. In 2011 International Conference on Computational Intelligence and Communication Networks (pp. 663-666). IEEE.
    [Google Scholar]
  25. Truong, V. T., & Le, L. B. (2023). MetaCIDS: Privacy-preserving collaborative intrusion detection for metaverse based on blockchain and online federated learning. IEEE Open Journal of the Computer Society.
    [Google Scholar]
  26. Chow, Y. W., Susilo, W., Li, Y., Li, N., & Nguyen, C. (2022). Visualization and cybersecurity in the metaverse: A survey. Journal of Imaging, 9(1), 11.
    [Google Scholar]
  27. Kabanda, G., Chipfumbu, C. T., & Chingoriwo, T. (2022). A Cybersecurity Model for a Roblox-based Metaverse Architecture Framework. British Journal of Multidisciplinary and Advanced Studies, 3(2), 105-141.
    [Google Scholar]
  28. Qayyum, A., Butt, M. A., Ali, H., Usman, M., Halabi, O., Al-Fuqaha, A., ... & Qadir, J. (2024). Secure and trustworthy artificial intelligence-extended reality (AI-XR) for metaverses. ACM Computing Surveys, 56(7), 1-38.
    [Google Scholar]
  29. Adil, M., Song, H., Khan, M. K., Farouk, A., & Jin, Z. (2024). 5G/6G-enabled metaverse technologies: Taxonomy, applications, and open security challenges with future research directions. Journal of Network and Computer Applications, 103828.
    [Google Scholar]
  30. Lee, U. K., & Kim, H. (2022). UTAUT in metaverse: An “Ifland” case. Journal of Theoretical and Applied Electronic Commerce Research, 17(2), 613-635.
    [Google Scholar]
  31. Siyaev, A., & Jo, G. S. (2021). Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality. Sensors, 21(6), 2066.
    [Google Scholar]
  32. Yang, K., Zhang, Z., Youliang, T., & Ma, J. (2023). A secure authentication framework to guarantee the traceability of avatars in metaverse. IEEE Transactions on Information Forensics and Security, 18, 3817-3832.
    [Google Scholar]
  33. Van der Merwe, D. (2021, October). The metaverse as virtual heterotopia. In 3rd world conference on research in social sciences (Vol. 1).
    [Google Scholar]
  34. Park, S. M., & Kim, Y. G. (2022). A metaverse: Taxonomy, components, applications, and open challenges. IEEE access, 10, 4209-4251.
    [Google Scholar]
  35. Meta. (2022, June 28). June 2022 | Meta. https://about.fb.com/news/2022/06/
    [Google Scholar]
  36. Roblox Terms of Use. (2024). roblox.com. https://en.help.roblox.com/hc/en-us/articles/ 115004647846-Roblox-Terms-of-Use
    [Google Scholar]
  37. Tan, Z. (2022, July). Metaverse, HCI, and its future. In 2022 3rd International Conference on Mental Health, Education and Human Development (MHEHD 2022) (pp. 897-901). Atlantis Press.
    [Google Scholar]
  38. Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., & Shen, X. (2022). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25(1), 319-352.
    [Google Scholar]
  39. Wu, J., Lin, K., Lin, D., Zheng, Z., Huang, H., & Zheng, Z. (2023). Financial crimes in web3-empowered metaverse: Taxonomy, countermeasures, and opportunities. IEEE Open Journal of the Computer Society, 4, 37-49.
    [Google Scholar]
  40. Sami, H., Hammoud, A., Arafeh, M., Wazzeh, M., Arisdakessian, S., Chahoud, M., ... & Guizani, M. (2024). The metaverse: Survey, trends, novel pipeline ecosystem & future directions. IEEE Communications Surveys & Tutorials.
    [Google Scholar]
  41. Bhardwaj, A., & Kaushik, K. (2023). Metaverse or Metaworst with Cybersecurity Attacks. IT Professional, 25(3), 54-60.
    [Google Scholar]
  42. Jaber, T. A. (2022). Security Risks of the Metaverse World. Int. J. Interact. Mob. Technol., 16(13), 4-14.
    [Google Scholar]
  43. Pooyandeh, M., Han, K. J., & Sohn, I. (2022). Cybersecurity in the AI-Based metaverse: A survey. Applied Sciences, 12(24), 12993.
    [Google Scholar]
  44. Khang, A., Abdullayev, V., Ali, R. N., Bali, S. Y., Mammadaga, G. M., & Hafiz, M. K. (2024). Using big data to solve problems in the field of medicine. In Computer Vision and AI-Integrated IoT Technologies in the Medical Ecosystem (pp. 407-418). CRC Press.
    [Google Scholar]
  45. Kürtünlüoğlu, P., Akdik, B., & Karaarslan, E. (2022). Security of virtual reality authentication methods in metaverse: An overview. arXiv preprint arXiv:2209.06447.
    [Google Scholar]
  46. Tariq, S., Abuadbba, A., & Moore, K. (2023, July). Deepfake in the metaverse: Security implications for virtual gaming, meetings, and offices. In Proceedings of the 2nd Workshop on Security Implications of Deepfakes and Cheapfakes (pp. 16-19).
    [Google Scholar]
  47. Metz, D., & Gurău, M. M. (2017). Emerging and Disruptive Technologies: The Metaverse. Implications on Global Security. Land Forces Academy Review, 27(4), 411-422.
    [Google Scholar]
  48. Yang, K., Zhang, Z., Youliang, T., & Ma, J. (2023). A secure authentication framework to guarantee the traceability of avatars in metaverse. IEEE Transactions on Information Forensics and Security, 18, 3817-3832.
    [Google Scholar]
  49. Chow, Y. W., Susilo, W., Li, Y., Li, N., & Nguyen, C. (2022). Visualization and cybersecurity in the metaverse: A survey. Journal of Imaging, 9(1), 11.
    [Google Scholar]
  50. Patwe, S., & Mane, S. (2023, April). Blockchain enabled architecture for secure authentication in the metaverse environment. In 2023 IEEE 8th International Conference for Convergence in Technology (I2CT) (pp. 1-8). IEEE.
    [Google Scholar]
  51. Metz, D., & Gurău, M. M. (2017). Emerging and Disruptive Technologies: The Metaverse. Implications on Global Security. Land Forces Academy Review, 27(4), 411-422.
    [Google Scholar]
  52. Ooi, B. C., Chen, G., Shou, M. Z., Tan, K. L., Tung, A., Xiao, X., ... & Zhang, M. (2023, April). The metaverse data deluge: What can we do about it?. In 2023 IEEE 39th International Conference on Data Engineering (ICDE) (pp. 3675-3687). IEEE.
    [Google Scholar]
  53. Tang, F., Chen, X., Zhao, M., & Kato, N. (2022). The Roadmap of Communication and Networking in 6G for the Metaverse. IEEE Wireless Communications, 30(4), 72-81.
    [Google Scholar]
  54. Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE wireless Communications, 18(2), 66-74.
    [Google Scholar]
  55. Xu, H., Li, Z., Li, Z., Zhang, X., Sun, Y., & Zhang, L. (2022, May). Metaverse native communication: A blockchain and spectrum prospective. In 2022 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 7-12). IEEE.
    [Google Scholar]
  56. Hu, M., Luo, X., Chen, J., Lee, Y. C., Zhou, Y., & Wu, D. (2021). Virtual reality: A survey of enabling technologies and its applications in IoT. Journal of Network and Computer Applications, 178, 102970.
    [Google Scholar]
  57. Lee, L. H., Braud, T., Zhou, P. Y., Wang, L., Xu, D., Lin, Z., ... & Hui, P. (2024). All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. Foundations and trends® in human-computer interaction, 18(2–3), 100-337.
    [Google Scholar]
  58. Upadhyay, A. K., & Khandelwal, K. (2022). Metaverse: the future of immersive training. Strategic HR Review, 21(3), 83-86.
    [Google Scholar]
  59. Gao, Y., Wu, W., Si, P., Yang, Z., & Yu, F. R. (2021). B-ReST: Blockchain-enabled resource sharing and transactions in fog computing. IEEE Wireless Communications, 28(2), 172-180.
    [Google Scholar]
  60. Kuzlu, M., Catak, F. O., Zhao, Y., Sarp, S., & Catak, E. (2023). Security and privacy concerns in next-generation networks using artificial intelligence-based solutions: A potential use case. In Wireless Networks: Cyber Security Threats and Countermeasures (pp. 205-226). Cham: Springer International Publishing.
    [Google Scholar]
  61. Gadekallu, T. R., Huynh-The, T., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q. V., ... & Liyanage, M. (2022). Blockchain for the metaverse: A review. arXiv preprint arXiv:2203.09738.
    [Google Scholar]
  62. Park, W. H., Siddiqui, I. F., & Qureshi, N. M. F. (2022). AI-Enabled Grouping Bridgehead to Secure Penetration Topics of Metaverse. Computers, Materials & Continua, 73(3).
    [Google Scholar]
  63. T., Han, Z., & Kim, D. S. (2023). Artificial intelligence Huynh-The, T., Pham, Q. V., Pham, X. Q., Nguyen, T. for the metaverse: A survey. Engineering Applications of Artificial Intelligence, 117, 105581.
    [Google Scholar]
  64. Zhao, R., Zhang, Y., Zhu, Y., Lan, R., & Hua, Z. (2023). Metaverse: Security and privacy concerns. Journal of Metaverse, 3(2), 93-99.
    [Google Scholar]
  65. Liu, S., Zou, H., Zhao, X., Wang, C., & Fan, Y. (2023). Preface: Security and Safety in the “Metaverse”. Security and Safety, 2, E2023014.
    [Google Scholar]
  66. Ryu, J., Son, S., Lee, J., Park, Y., & Park, Y. (2022). Design of secure mutual authentication scheme for metaverse environments using blockchain. IEEE Access, 10, 98944-98958.
    [Google Scholar]
  67. Qamar, S., Anwar, Z., & Afzal, M. (2023). A systematic threat analysis and defense strategies for the metaverse and extended reality systems. Computers & Security, 128, 103127.
    [Google Scholar]
  68. Park, J. H., Rathore, S., Singh, S. K., Salim, M. M., Azzaoui, A. E., Kim, T. W., ... & Park, J. H. (2021). A comprehensive survey on core technologies and services for 5G security: Taxonomies, issues, and solutions. Hum.-Centric Comput. Inf. Sci, 11(3).
    [Google Scholar]
  69. Singh, S. K., Azzaoui, A., Choo, K. K. R., Yang, L. T., & Park, J. H. (2023). Articles A Comprehensive Survey on Blockchain for Secure IoT-enabled Smart City beyond 5G: Approaches, Processes, Challenges, and Opportunities. Hum.-. Centric Comput. Inf. Sci, 13, 51.
    [Google Scholar]
  70. Singh, S. K., Kumar, M., Tanwar, S., & Park, J. H. (2024). GRU-based digital twin framework for data allocation and storage in IoT-enabled smart home networks. Future Generation Computer Systems, 153, 391-402.
    [Google Scholar]
  71. Yang, J., Yang, C., Zhang, X., & Na, J. (2024). Fixed-time sliding mode control with varying exponent coefficient for modular reconfigurable flight arrays. IEEE/CAA Journal of Automatica Sinica, 11(2), 514-528.
    [Google Scholar]
  72. Yao, Z., Yang, C., Peng, Y., Zhang, X., & Chen, F. (2023). A data-driven fault detection approach for Modular Reconfigurable Flying Array based on the Improved Deep Forest. Measurement, 206, 112217.
    [Google Scholar]
  73. Ali, J., Singh, S. K., Jiang, W., Alenezi, A. M., Islam, M., Daradkeh, Y. I., & Mehmood, A. (2025). A deep dive into cybersecurity solutions for AI-driven IoT-enabled smart cities in advanced communication networks. Computer Communications, 229, 108000.
    [Google Scholar]
  74. Singh, S. K., Kumar, M., Khanna, A., & Virdee, B. (2024). Blockchain and FL-based secure architecture for enhanced external Intrusion detection in smart farming. IEEE Internet of Things Journal.
    [Google Scholar]
  75. Usman, M. T., Khan, H., Singh, S. K., Lee, M. Y., & Koo, J. (2024). Efficient deepfake detection via layer-frozen assisted dual attention network for consumer imaging devices. IEEE Transactions on Consumer Electronics.
    [Google Scholar]
  76. Khan, M. N., Khalil, I., Ullah, I., Singh, S. K., Dhahbi, S., Khan, H., ... & Al-Khasawneh, M. A. (2024). Self-adaptive and content-based scheduling for reducing idle listening and overhearing in securing quantum IoT sensors. Internet of Things, 27, 101312.
    [Google Scholar]

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 108
PDF Downloads: 9

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
IECE or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Intelligent Systematics

IECE Transactions on Intelligent Systematics

ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.