IECE Transactions on Intelligent Systematics
ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)
Email: [email protected]
[1] Ma, C., Zhao, Y., Dai, G., Xu, X., & Wong, S. C. (2022). A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction. IEEE Transactions on Intelligent Transportation Systems, 24(4), 3728-3737.
[2] Zhang, J., Cui, Y., & Ren, J. (2022). Dynamic mission planning algorithm for UAV formation in battlefield environment. IEEE Transactions on Aerospace and Electronic Systems, 59(4), 3750-3765.
[3] Ma, C., Dai, G., & Zhou, J. (2021). Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM-BILSTM method. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5615-5624.
[4] Kong, J., Yang, C., Wang, J., Wang, X., Zuo, M., Jin, X., & Lin, S. (2021). Deep-stacking network approach by multisource data mining for hazardous risk identification in IoT-based intelligent food management systems. Computational Intelligence and Neuroscience, 2021(1), 1194565.
[5] Jiang, R., Han, S., Yu, Y., & Ding, W. (2023). An access control model for medical big data based on clustering and risk. Information Sciences, 621, 691-707.
[6] Tian, Y., & Pan, L. (2015, December). Predicting short-term traffic flow by long short-term memory recurrent neural network. In 2015 IEEE international conference on smart city/SocialCom/SustainCom (SmartCity) (pp. 153-158). IEEE.
[7] Jin, X. B., Wang, Z. Y., Kong, J. L., Bai, Y. T., Su, T. L., Ma, H. J., & Chakrabarti, P. (2023). Deep spatio-temporal graph network with self-optimization for air quality prediction. Entropy, 25(2), 247.
[8] Jin, X., Zhang, J., Kong, J., Su, T., & Bai, Y. (2022). A reversible automatic selection normalization (RASN) deep network for predicting in the smart agriculture system. Agronomy, 12(3), 591.
[9] Lydia, M., Kumar, S. S., Selvakumar, A. I., & Kumar, G. E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy conversion and management, 112, 115-124.
[10] Yang, B., Sun, S., Li, J., Lin, X., & Tian, Y. (2019). Traffic flow prediction using LSTM with feature enhancement. Neurocomputing, 332, 320-327.
[11] Meng, X., Fu, H., Peng, L., Liu, G., Yu, Y., Wang, Z., & Chen, E. (2020). D-LSTM: Short-term road traffic speed prediction model based on GPS positioning data. IEEE Transactions on Intelligent Transportation Systems, 23(3), 2021-2030.
[12] Chen, C., Liu, Z., Wan, S., Luan, J., & Pei, Q. (2020). Traffic flow prediction based on deep learning in internet of vehicles. IEEE transactions on intelligent transportation systems, 22(6), 3776-3789.
[13] Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent neural networks and robust time series prediction. IEEE transactions on neural networks, 5(2), 240-254.
[14] Jaitly, N., Le, Q. V., Vinyals, O., Sutskever, I., Sussillo, D., & Bengio, S. (2016). An online sequence-to-sequence model using partial conditioning. Advances in neural information processing systems, 29.
[15] Chen, Z., Chen, L., Shen, W., & Xu, K. (2021). Remaining useful life prediction of lithium-ion battery via a sequence decomposition and deep learning integrated approach. IEEE Transactions on Vehicular Technology, 71(2), 1466-1479.
[16] Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48-62.
[17] Jin, X. B., Wang, Z. Y., Gong, W. T., Kong, J. L., Bai, Y. T., Su, T. L., ... & Chakrabarti, P. (2023). Variational bayesian network with information interpretability filtering for air quality forecasting. Mathematics, 11(4), 837.
[18] Qiu, Z., Zhu, T., Jin, Y., Sun, L., & Du, B. (2023). A graph attention fusion network for event-driven traffic speed prediction. Information Sciences, 622, 405-423.
[19] Kao, I. F., Zhou, Y., Chang, L. C., & Chang, F. J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631.
[20] Du, S., Li, T., Yang, Y., & Horng, S. J. (2020). Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocomputing, 388, 269-279.
[21] Kong, J. L., Fan, X. M., Jin, X. B., Su, T. L., Bai, Y. T., Ma, H. J., & Zuo, M. (2023). BMAE-Net: A data-driven weather prediction network for smart agriculture. Agronomy, 13(3), 625.
[22] Shi, B., Ou, Y., Wang, D., & Zhao, G. (2024). Self-Organizing Hierarchical Incremental Learning Framework and Universal Approximation Analysis Based on Stochastic Configuration Mechanism. Information Sciences, 121402.
[23] Wang, D., & Li, M. (2017). Stochastic configuration networks: Fundamentals and algorithms. IEEE transactions on cybernetics, 47(10), 3466-3479.
[24] Chen, X., Chen, Y., and He, Z.(2021). Urban Traffic Speed Dataset of Guangzhou, China. Zenodo.
[25] Wang, Y., Liao, W., & Chang, Y. (2018). Gated recurrent unit network-based short-term photovoltaic forecasting. Energies, 11(8), 2163.
IECE Transactions on Intelligent Systematics
ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/