IECE Transactions on Intelligent Unmanned Systems
ISSN: 2998-9140 (Online)
Email: [email protected]
[1]Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning for detecting robotic grasps. The International Journal of Robotics Research, 34(4-5), 705-724.
[2] Asif, U., Bennamoun, M., & Sohel, F. A. (2017). RGB-D object recognition and grasp detection using hierarchical cascaded forests. IEEE Transactions on Robotics, 33(3), 547-564.
[3] Kumra, S., & Kanan, C. (2017, September). Robotic grasp detection using deep convolutional neural networks. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 769-776).
[4] Redmon, J., & Angelova, A. (2015, May). Real-time grasp detection using convolutional neural networks. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1316-1322).
[5] Bicchi, A., & Kumar, V. (2000, April). Robotic grasping and contact: A review. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 348-353).
[6] Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110-122.
[7] Miller, A. T., Knoop, S., Christensen, H. I., & Allen, P. K. (2003, September). Automatic grasp planning using shape primitives. In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422) (Vol. 2, pp. 1824-1829).
[8] Pelossof, R., Miller, A., Allen, P., & Jebara, T. (2004, April). An SVM learning approach to robotic grasping. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 (Vol. 4, pp. 3512-3518).
[9] Wang, Z., Li, Z., Wang, B., & Liu, H. (2016). Robot grasp detection using multimodal deep convolutional neural networks. Advances in Mechanical Engineering, 8(9), 1687814016668077.
[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
[11] Jiang, Y., Moseson, S., & Saxena, A. (2011, May). Efficient grasping from rgbd images: Learning using a new rectangle representation. In 2011 IEEE International conference on robotics and automation (pp. 3304-3311).
[12] Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., & Xi, N. (2017, May). A hybrid deep architecture for robotic grasp detection. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1609-1614).
[13] Wang, N., Fang, F., & Feng, M. (2014, May). Multi-objective optimal analysis of comfort and energy management for intelligent buildings. In The 26th Chinese control and decision conference (2014 CCDC) (pp. 2783-2788). IEEE.
[14] Fang, F., & Wu, X. (2020). A win–win mode: The complementary and coexistence of 5G networks and edge computing. IEEE Internet of Things Journal, 8(6), 3983-4003.
[15] Lv, Y., Fang, F. A. N. G., Yang, T., & Romero, C. E. (2020). An early fault detection method for induced draft fans based on MSET with informative memory matrix selection. ISA transactions, 102, 325-334.
[16] Fang, F., Jizhen, L., & Wen, T. (2004). Nonlinear internal model control for the boiler-turbine coordinate systems of power unit. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, 24(4), 195-199.
[17] Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of coordinated controllers for boiler-turbine units. Acta Automatica Sinica, 31(2), 291-296.
[18] Wang, Y., Deng, J., Fang, Y., Li, H., & Li, X. (2017). Resilience-aware frequency tuning for neural-network-based approximate computing chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2736-2748.
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/