-
CiteScore
0.10
Impact Factor
Volume 2, Issue 1, Agricultural Science and Food Processing
Volume 2, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Bin Guo
Bin Guo
Northwest University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Agricultural Science and Food Processing, Volume 2, Issue 1, 2025: 12-25

Open Access | Review Article | 20 March 2025
Acrylamide in Food: Sources and Prevention
1 Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, United Kingdom
* Corresponding Author: Yiqing Zhang, [email protected]
Received: 30 September 2024, Accepted: 19 January 2025, Published: 20 March 2025  
Abstract
Acrylamide, a toxic compound with potential carcinogenic effects, is commonly formed in carbohydrate-rich foods through the Maillard reaction between reducing sugars and amino acids during high-temperature cooking processes. This study reviews the sources of acrylamide in food, its health risks, and various mitigation strategies. Acrylamide is prevalent in products such as bread, potato products, and coffee. Its formation is influenced by factors like pH, temperature, and cooking time. Effective mitigation strategies include modifying cooking methods, using enzymes like asparaginase, selecting low-carbohydrate materials, and applying pretreatments such as soaking in specific solutions or adding lactic acid bacteria. Regulatory measures by national governments and international organizations aim to minimize acrylamide levels in food to protect public health. Future research should focus on developing cost-effective and widely applicable methods to further reduce acrylamide content in food products.

Graphical Abstract
Acrylamide in Food: Sources and Prevention

Keywords
acrylamide
maillard reaction
health risk
prevention
mitigation strategies

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The author declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Mesías M, Morales F J, Delgado-Andrade C. Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019[J]. Food & function, 2019, 10(10): 6624-6632.
    [CrossRef]   [Google Scholar]
  2. Andačić, I. M., Tot, A., Ivešić, M., Krivohlavek, A., Thirumdas, R., Barba, F. J., ... & Brnčić, S. R. (2020). Exposure of the Croatian adult population to acrylamide through bread and bakery products. Food chemistry, 322, 126771.
    [CrossRef]   [Google Scholar]
  3. Mousavi Khaneghah, A., Fakhri, Y., Nematollahi, A., Seilani, F., & Vasseghian, Y. (2022). The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Reviews International, 38(6), 1286-1304.
    [CrossRef]   [Google Scholar]
  4. Mesías, M., & Morales, F. J. (2015). Acrylamide in commercial potato crisps from Spanish market: Trends from 2004 to 2014 and assessment of the dietary exposure. Food and Chemical Toxicology, 81, 104-110.
    [CrossRef]   [Google Scholar]
  5. EFSA Panel on Contaminants in the Food Chain (CONTAM). (2015). Scientific opinion on acrylamide in food. Efsa Journal, 13(6), 4104.
    [CrossRef]   [Google Scholar]
  6. Esposito, F., Nardone, A., Fasano, E., Triassi, M., & Cirillo, T. (2017). Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach. Food and Chemical Toxicology, 108, 249-256.
    [CrossRef]   [Google Scholar]
  7. Sarion, C., Codină, G. G., & Dabija, A. (2021). Acrylamide in bakery products: A review on health risks, legal regulations and strategies to reduce its formation. International Journal of Environmental Research and Public Health, 18(8), 4332.
    [CrossRef]   [Google Scholar]
  8. Cantrell, M. S., & McDougal, O. M. (2021). Biomedical rationale for acrylamide regulation and methods of detection. Comprehensive Reviews in Food Science and Food Safety, 20(2), 2176-2205.
    [CrossRef]   [Google Scholar]
  9. Rifai, L., & Saleh, F. A. (2020). A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. International journal of toxicology, 39(2), 93-102.
    [CrossRef]   [Google Scholar]
  10. JECFA, W. (2011). Evaluation of certain food additives and contaminants: seventy-fourth report of the joint FAO/WHO expert committee on food additives: world health Organization. https://iris.who.int/handle/10665/44788
    [Google Scholar]
  11. Andrawes, F., Greenhouse, S., & Draney, D. (1987). Chemistry of acrylamide bromination for trace analysis by gas chromatography and gas chromatography—mass spectrometry. Journal of Chromatography A, 399, 269-275.
    [CrossRef]   [Google Scholar]
  12. United States. Congress. House. Committee on Commerce. Subcommittee on Health and the Environment. (1996). Food Quality Protection Act of 1995: Hearings before the Subcommittee on Health and Environment of the Committee on Commerce, House of Representatives, One Hundred Fourth Congress, First Session, on H.R. 1627, June 7 and 29, 1995 (Vol. 4). U.S. Government Printing Office.
    [Google Scholar]
  13. Gökmen, V., & Şenyuva, H. Z. (2006). A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system. Food Additives and Contaminants, 23(4), 348-354.
    [CrossRef]   [Google Scholar]
  14. Arámbula‐Villa, G., Flores‐Casamayor, V., Velés‐Medina, J. J., & Salazar, R. (2018). Mitigating effect of calcium and magnesium on acrylamide formation in tortilla chips. Cereal Chemistry, 95(1), 94-97.
    [CrossRef]   [Google Scholar]
  15. Lindsay, R. C., & Jang, S. (2005). Model systems for evaluating factors affecting acrylamide formation in deep fried foods. In Chemistry and safety of acrylamide in food (pp. 329-341). Boston, MA: Springer US.
    [CrossRef]   [Google Scholar]
  16. Saraji, M., & Javadian, S. (2019). Single-drop microextraction combined with gas chromatography-electron capture detection for the determination of acrylamide in food samples. Food Chemistry, 274, 55–60.
    [CrossRef]   [Google Scholar]
  17. Norouzi, E., Kamankesh, M., Mohammadi, A., & Attaran, A.M. (2018). Acrylamide in bread samples: Determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. Journal of Cereal Science, 79, 1-5.
    [CrossRef]   [Google Scholar]
  18. Keramat, J., LeBail, A., Prost, C., & Soltanizadeh, N. (2011). Acrylamide in foods: chemistry and analysis. A review. Food and bioprocess technology, 4, 340-363.
    [CrossRef]   [Google Scholar]
  19. Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449.
    [CrossRef]   [Google Scholar]
  20. Stadler, R. H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., ... & Blank, I. (2004). In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. Journal of agricultural and food chemistry, 52(17), 5550-5558.
    [CrossRef]   [Google Scholar]
  21. Yaylayan, V. A., Wnorowski, A., & Perez Locas, C. (2003). Why asparagine needs carbohydrates to generate acrylamide. Journal of agricultural and food chemistry, 51(6), 1753-1757.
    [CrossRef]   [Google Scholar]
  22. Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., ... & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of agricultural and food chemistry, 51(16), 4782-4787.
    [CrossRef]   [Google Scholar]
  23. Yaylayan, V. A., Locas, C. P., Wnorowski, A., & O'Brien, J. (2004). The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat. Journal of Agricultural and Food Chemistry, 52(17), 5559-5565.
    [CrossRef]   [Google Scholar]
  24. Wnorowski, A., & Yaylayan, V. A. (2003). Monitoring carbonyl-amine reaction between pyruvic acid and $\alpha$-amino alcohols by FTIR spectroscopy a possible route to Amadori products. Journal of Agricultural and Food Chemistry, 51(22), 6537-6543.
    [CrossRef]   [Google Scholar]
  25. Yaylayan, V. A., Perez Locas, C., Wnorowski, A., & O’Brien, J. (2005). Mechanistic pathways of formation of acrylamide from different amino acids. In Chemistry and safety of acrylamide in food (pp. 191-203). Springer US.
    [CrossRef]   [Google Scholar]
  26. Gertz, C., & Klostermann, S. (2002). Analysis of acrylamide and mechanisms of its formation in deep‐fried products. European Journal of Lipid Science and Technology, 104(11), 762-771.
    [CrossRef]   [Google Scholar]
  27. Eriksson, S. (2005). Acrylamide in food products: Identification, formation and analytical methodology (Doctoral dissertation, Institutionen för miljökemi).
    [Google Scholar]
  28. Casella, I. G., & Contursi, M. (2004). Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. Journal of agricultural and food chemistry, 52(19), 5816-5821.
    [Google Scholar]
  29. Yasuhara, A., Tanaka, Y., Hengel, M., & Shibamoto, T. (2003). Gas Chromatographic Investigation of Acrylamide Formation in Browning Model Systems. Journal of Agricultural and Food Chemistry, 51(14), 3999–4003.
    [CrossRef]   [Google Scholar]
  30. Zhang, Y., Zhang, G., & Zhang, Y. (2005). Occurrence and analytical methods of acrylamide in heat-treated foods. Journal of Chromatography A, 1075(1–2), 1–21.
    [CrossRef]   [Google Scholar]
  31. Charoenprasert, S., & Mitchell, A. (2014). Influence of California-Style Black Ripe Olive Processing on the Formation of Acrylamide. Journal of Agricultural and Food Chemistry, 62(34), 8716–8721.
    [CrossRef]   [Google Scholar]
  32. Casado, F. J., Sanchez, A. H., & Montano, A. (2010). Reduction of acrylamide content of ripe olives by selected additives. Food Chemistry, 119(1),161–166.
    [CrossRef]   [Google Scholar]
  33. Suman, M., Generotti, S., Cirlini, M., & Dall’Asta, C. (2019). Acrylamide reduction strategy in combination with deoxynivalenol mitigation in industrial biscuits production. Toxins, 11(9), 499.
    [CrossRef]   [Google Scholar]
  34. Graf, M., Amrein, T. M., Graf, S., Szalay, R., Escher, F., & Amadò, R. (2006). Reducing the acrylamide content of a semi-finished biscuit on industrial scale. LWT-Food Science and Technology, 39(7), 724-728.
    [CrossRef]   [Google Scholar]
  35. Yuan, Y., Chen, F., Zhao, G. H., Liu, J., Zhang, H. X., & Hu, X. S. (2007). A comparative study of acrylamide formation induced by microwave and conventional heating methods. Journal of food science, 72(4), C212-C216.
    [CrossRef]   [Google Scholar]
  36. Martins, S. I. F. S., Jongen, W. M. F., & Van Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9–10), 364–373.
    [CrossRef]   [Google Scholar]
  37. Brown, R. (2003, February). Formation, occurrence and strategies to address acrylamide in food. In FDA advisory committee meeting on acrylmaide (Vol. 2, pp. 24-5).
    [Google Scholar]
  38. Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. Journal of agricultural and food chemistry, 51(24), 7012-7018.
    [CrossRef]   [Google Scholar]
  39. Generotti, S., Cirlini, M., Sarkanj, B., Sulyok, M., Berthiller, F., Dall’Asta, C., & Suman, M. (2017). Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chemistry, 229, 597–603.
    [CrossRef]   [Google Scholar]
  40. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry, 50(17), 4998-5006.
    [CrossRef]   [Google Scholar]
  41. Becalski, A., Lau, B. P. Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods: occurrence, sources, and modeling. Journal of agricultural and food chemistry, 51(3), 802-808.
    [CrossRef]   [Google Scholar]
  42. Gökmen, V., Açar, Ö. Ç., Köksel, H., & Acar, J. (2007). Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food chemistry, 104(3), 1136-1142.
    [CrossRef]   [Google Scholar]
  43. Esposito, F., Fasano, E., De Vivo, A., Velotto, S., Sarghini, F., & Cirillo, T. (2020). Processing effects on acrylamide content in roasted coffee production. Food chemistry, 319, 126550.
    [CrossRef]   [Google Scholar]
  44. Santos, J. R., Viegas, O., Pascoa, R. N. M. J., Ferreira, I. M. P. L. V. O., Rangel, A. O. S. S., & Lopes, J. A. (2016). In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chemistry, 208, 103–110.
    [CrossRef]   [Google Scholar]
  45. Gökmen, V., & Palazoğlu, T. K. (2008). Acrylamide formation in foods during thermal processing with a focus on frying. Food and bioprocess technology, 1, 35-42.
    [CrossRef]   [Google Scholar]
  46. Taubert, D., Harlfinger, S., Henkes, L., Berkels, R., & Schömig, E. (2004). Influence of processing parameters on acrylamide formation during frying of potatoes. Journal of agricultural and food chemistry, 52(9), 2735-2739.
    [CrossRef]   [Google Scholar]
  47. Knol, J. J., Viklund, G. Å., Linssen, J. P., Sjöholm, I. M., Skog, K. I., & van Boekel, M. A. (2009). Kinetic modelling: A tool to predict the formation of acrylamide in potato crisps. Food Chemistry, 113(1), 103-109.
    [CrossRef]   [Google Scholar]
  48. Kita, A., Brathen, E., Knutsen, S. H., & Wicklund, T. (2004). Effective Ways of Decreasing Acrylamide Content in Potato Crisps during Processing . Journal of Agricultural and Food Chemistry, 52(23), 7011–7016.
    [CrossRef]   [Google Scholar]
  49. Bråthen, E., & Knutsen, S. H. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693-700.
    [CrossRef]   [Google Scholar]
  50. Amrein, T. M., Bachmann, S., Noti, A., Biedermann, M., Barbosa, M. F., Biedermann-Brem, S., ... & Amadó, R. (2003). Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. Journal of agricultural and food chemistry, 51(18), 5556-5560.
    [CrossRef]   [Google Scholar]
  51. De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Ooghe, W., Fraselle, S., ... & Verhé, R. (2006). Selection criteria for potato tubers to minimize acrylamide formation during frying. Journal of Agricultural and Food Chemistry, 54(6), 2199-2205.
    [CrossRef]   [Google Scholar]
  52. Gokmen, V., Palazolu, T. K., & Senyuva, H. Z. (2006). Relation between the acrylamide formation and time–temperature history of surface and core regions of French fries. Journal of Food Engineering, 77(4), 972–976.
    [CrossRef]   [Google Scholar]
  53. Deribew, H. A., & Woldegiorgis, A. Z. (2021). Acrylamide levels in coffee powder, potato chips and French fries in Addis Ababa city of Ethiopia. Food control, 123, 107727.
    [CrossRef]   [Google Scholar]
  54. Sansano, M., De los Reyes, R., Andrés, A., & Heredia, A. (2018). Effect of microwave frying on acrylamide generation, mass transfer, color, and texture in french fries. Food and Bioprocess Technology, 11, 1934-1939.
    [CrossRef]   [Google Scholar]
  55. Oracz, J., Nebesny, E., & Zyzelewicz, D. (2011). New trends in quantification of acrylamide in food products. Talanta, 86, 23–34.
    [CrossRef]   [Google Scholar]
  56. Sansano, M., Juan‐Borras, M., Escriche, I., Andres, A., & Heredia, A. (2015). Effect of Pretreatments and Air‐Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes. Journal of Food Science, 80(5).
    [CrossRef]   [Google Scholar]
  57. Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2013). Mass transfer and volume changes in French fries during air frying. Food and Bioprocess Technology, 6, 1917-1924.
    [CrossRef]   [Google Scholar]
  58. Garayo, J., & Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55(2), 181–191.
    [CrossRef]   [Google Scholar]
  59. FAO. (2024). Code of practice for the reduction of acrylamide in foods. Food and Agriculture Organization of the United Nations.
    [Google Scholar]
  60. U.S. Food and Drug Administration. (2023). Reducing acrylamide in potato-based foods: Fact sheet. Retrieved from https://www.fda.gov/media/149436/download
    [Google Scholar]
  61. Mariotti-Celis, M. S., Cortes, P., Dueik, V., Bouchon, P., & Pedreschi, F. (2017). Application of Vacuum Frying as a Furan and Acrylamide Mitigation Technology in Potato Chips. Food and Bioprocess Technology, 10(11), 2092–2099.
    [CrossRef]   [Google Scholar]
  62. Wriston, J.C. (1985). Asparaginase. Methods in Enzymology,113,608-618.
    [Google Scholar]
  63. Hendriksen, H. V., Kornbrust, B. A., Østergaard, P. R., & Stringer, M. A. (2009). Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. Journal of agricultural and food chemistry, 57(10), 4168-4176.
    [CrossRef]   [Google Scholar]
  64. Ciesarová, Z., Kiss, E., & Boegl, P. (2006). Impact of L-asparaginase on acrylamide content in potato products. Journal of Food and Nutrition Research, 45(4), 141–146.
    [Google Scholar]
  65. Mahajan, R. V., Saran, S., Kameswaran, K., Kumar, V., & Saxena, R. K. (2012). Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies. Bioresource technology, 125, 11-16.
    [CrossRef]   [Google Scholar]
  66. Pedreschi, F., Kaack, K., & Granby, K. (2008). The effect of asparaginase on acrylamide formation in French fries. Food chemistry, 109(2), 386-392.
    [CrossRef]   [Google Scholar]
  67. Zuo, S., Zhang, T., Jiang, B., & Mu, W. (2015). Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles, 19, 841-851.
    [CrossRef]   [Google Scholar]
  68. Pedreschi, F., Mariotti, S., Granby, K., & Risum, J. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT-food Science and Technology, 44(6), 1473-1476.
    [CrossRef]   [Google Scholar]
  69. Onishi, Y., Prihanto, A. A., Yano, S., Takagi, K., Umekawa, M., & Wakayama, M. (2015). Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis. 3 Biotech, 5, 783-789.
    [CrossRef]   [Google Scholar]
  70. Tuncel, N. B., Yılmaz, N., & Şener, E. (2010). The effect of pea (Pisum sativum L.)-originated asparaginase on acrylamide formation in certain bread types. International Journal of Food Science and Technology, 45(12), 2470-2476.
    [CrossRef]   [Google Scholar]
  71. Ciesarová, Z., Kukurová, K., Mikušová, L., Basil, E., Polakovičová, P., Duchoňová, L., ... & Šturdík, E. (2014). Nutritionally enhanced wheat-oat bread with reduced acrylamide level. Quality Assurance and Safety of Crops & Foods, 327-334.
    [CrossRef]   [Google Scholar]
  72. Mohan Kumar, N. S., Shimray, C. A., Indrani, D., & Manonmani, H. K. (2014). Reduction of acrylamide formation in sweet bread with L-asparaginase treatment. Food and Bioprocess Technology, 7(3), 741-748.
    [CrossRef]   [Google Scholar]
  73. Amrein, T. M., Schönbächler, B., Escher, F., & Amadò, R. (2004). Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. Journal of Agricultural and Food Chemistry, 52(13), 4282-4288.
    [CrossRef]   [Google Scholar]
  74. Huang, L., Liu, Y., Sun, Y., Yan, Q., & Jiang, Z. (2014). Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Applied and environmental microbiology, 80(5), 1561-1569.
    [CrossRef]   [Google Scholar]
  75. Anese, M., Quarta, B., & Frias, J. (2011). Modelling the effect of asparaginase in reducing acrylamide formation in biscuits. Food chemistry, 126(2), 435-440.
    [CrossRef]   [Google Scholar]
  76. Vass, M., M Amrein, T., Schonbachler, B., Escher, F., & Amado, R. (2004). Ways to reduce the acrylamide formation in cracker products. Czech Journal of Food Sciences, 22(SI-Chem. Reactions in Foods V), S19–S21.
    [CrossRef]   [Google Scholar]
  77. Muttucumaru, N., Powers, S. J., Elmore, J. S., Dodson, A., Briddon, A., Mottram, D. S., & Halford, N. G. (2017). Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food chemistry, 220, 76-86.
    [CrossRef]   [Google Scholar]
  78. Liyanage, D. W., Yevtushenko, D. P., Konschuh, M., Bizimungu, B., & Lu, Z. X. (2021). Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars. Food control, 119, 107452.
    [CrossRef]   [Google Scholar]
  79. Elmore, J. S., Koutsidis, G., Dodson, A. T., Mottram, D. S., & Wedzicha, B. L. (2005). Measurement of Acrylamide and Its Precursors in Potato, Wheat, and Rye Model Systems. Journal of Agricultural and Food Chemistry, 53(4), 1286–1293.
    [CrossRef]   [Google Scholar]
  80. Crawford, L. M., Kahlon, T. S., Chiu, M. C. M., Wang, S. C., & Friedman, M. (2019). Acrylamide content of experimental and commercial flatbreads. Journal of food science, 84(3), 659-666.
    [CrossRef]   [Google Scholar]
  81. Banchero, M., Pellegrino, G., & Manna, L. (2013). Supercritical fluid extraction as a potential mitigation strategy for the reduction of acrylamide level in coffee. Journal of Food Engineering, 115(3), 292-297.
    [CrossRef]   [Google Scholar]
  82. Tuta, S., Palazoğlu, T. K., & Gökmen, V. (2010). Effect of microwave pre-thawing of frozen potato strips on acrylamide level and quality of French fries. Journal of food engineering, 97(2), 261-266.
    [CrossRef]   [Google Scholar]
  83. Liu, H., Li, X., & Yuan, Y. (2020). Mitigation effect of sodium alginate on acrylamide formation in fried potato chips system based on response surface methodology. Journal of Food Science, 85(8), 2615–2621.
    [CrossRef]   [Google Scholar]
  84. Garmakhany, A. D., Mirzaei, H. O., Nejad, M. K., & Maghsudlo, Y. (2008). Study of oil uptake and some quality attributes of potato chips affected by hydrocolloids. European journal of lipid science and technology, 110(11), 1045-1049.
    [CrossRef]   [Google Scholar]
  85. Hua, X., Wang, K., Yang, R., Kang, J., & Yang, H. (2015). Edible coatings from sunflower head pectin to reduce lipid uptake in fried potato chips. LWT-Food Science and Technology, 62(2), 1220-1225.
    [CrossRef]   [Google Scholar]
  86. Champrasert, O., Chu, J., Meng, Q., Viney, S., Holmes, M., Suwannaporn, P., & Orfila, C. (2021). Inhibitory effect of polysaccharides on acrylamide formation in chemical and food model systems. Food Chemistry, 363, 130213.
    [CrossRef]   [Google Scholar]
  87. Bartkiene, E., Bartkevics, V., Pugajeva, I., Krungleviciute, V., Mayrhofer, S., & Domig, K. (2017). The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye-Wheat bread. Lwt, 80, 43-50.
    [CrossRef]   [Google Scholar]
  88. Dastmalchi, F., Razavi, S. H., Faraji, M., & Labbafi, M. (2016). Effect of Lactobacillus casei- casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll. Journal of food science and technology, 53(3), 1531–1539.
    [CrossRef]   [Google Scholar]
  89. Nguyen, H. T., Van Der Fels-Klerx, H. J. (Ine)., & Van Boekel, M. A. J. S. (2017). Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 230, 14–23.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zhang, Y. (2025). Acrylamide in Food: Sources and Prevention. Agricultural Science and Food Processing, 2(1), 12-25. https://doi.org/10.62762/ASFP.2024.537179

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 92
PDF Downloads: 29

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Agricultural Science and Food Processing

Agricultural Science and Food Processing

ISSN: 3066-1579 (Online) | ISSN: 3066-1560 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.