-
CiteScore
0.10
Impact Factor
Volume 2, Issue 1, Agricultural Science and Food Processing
Volume 2, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Bin Guo
Bin Guo
Northwest University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Agricultural Science and Food Processing, Volume 2, Issue 1, 2025: 26-46

Open Access | Review Article | 28 March 2025
The Application of Genomics in Agriculture
1 Beijing Technology and Business University, Beijing 100048, China
* Corresponding Author: Yufei Yang, 2303020124@st.btbu.edu.cn
Received: 23 January 2025, Accepted: 17 March 2025, Published: 28 March 2025  
Abstract
With the growing global population and the challenges of environmental change, genomics has a crucial role to play in improving agricultural yield and sustainability. This article reviews the application of genomics in crop, animal husbandry, fishery and forestry in the past five years. In crop production, genomics has facilitated the genetic improvement of major crops such as rice, wheat, and maize, which have improved crop nutritional value, yield, and resistance to abiotic stresses. In the livestock industry, genomics research in poultry and other livestock has driven breeding improvements and enhanced animal health and productivity. Fisheries use genomic resources for population management and conservation to achieve sustainable development. In addition, the application of genomics in forestry also shows great potential. Overall, the application of genomics not only improves agricultural productivity, but also helps to address the challenges of global food security and environmental protection.

Graphical Abstract
The Application of Genomics in Agriculture

Keywords
breeding
agriculture
genome

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The author declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: new computational modelling techniques for genomics. Nature reviews genetics, 20(7), 389-403.
    [CrossRef]   [Google Scholar]
  2. Wang, C., & Han, B. (2022). Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Molecular Plant, 15(4), 593-619.
    [CrossRef]   [Google Scholar]
  3. Yu, S., Ali, J., Zhou, S., Ren, G., Xie, H., Xu, J., ... & Zhang, Q. (2022). From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. Molecular Plant, 15(1), 9-26.
    [CrossRef]   [Google Scholar]
  4. Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell, 184(6), 1621-1635.
    [CrossRef]   [Google Scholar]
  5. Naglaa A, A. (2022). Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger.
    [Google Scholar]
  6. Lee, S. Y., Jeung, J. U., & Mo, Y. (2024). Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice. G3: Genes, Genomes, Genetics, 14(3), jkad300.
    [CrossRef]   [Google Scholar]
  7. Zaghum, M. J., Ali, K., & Teng, S. (2022). Integrated genetic and omics approaches for the regulation of nutritional activities in rice (Oryza sativa L.). Agriculture, 12(11), 1757.
    [CrossRef]   [Google Scholar]
  8. Xuan, N., Zhang, H., Liu, X., Guo, Q., Liu, J., & Yao, F. (2020). Analysis of the relationship between blast resistance genes and disease resistance of rice germplasm via functional molecular markers. Phyton, 89(1), 45.
    [CrossRef]   [Google Scholar]
  9. Das, S. P., Jasrotia, R. S., Deb, D., Iquebal, M. A., Jaiswal, S., & Dey, N. (2021). Genomic analysis of polycarpellary rice (Oryza sativa L.) through whole genome resequencing. Journal of Plant Biochemistry and Biotechnology, 30, 364-372.
    [CrossRef]   [Google Scholar]
  10. Liu, G., Qiu, D., Lu, Y., Wu, Y., Han, X., Jiao, Y., ... & Zhang, Z. (2023). Identification of Superior Haplotypes and Haplotype Combinations for Grain Size-and Weight-Related Genes for Breeding Applications in Rice (Oryza sativa L.). Genes, 14(12), 2201.
    [CrossRef]   [Google Scholar]
  11. Yang, W., Yang, Z., Yang, L., Li, Z., Zhang, Z., Wei, T., ... & Li, G. (2024). Genomic and transcriptomic analyses of the elite rice variety Huizhan provide insight into disease resistance and heat tolerance. Genomics, 116(5), 110915.
    [CrossRef]   [Google Scholar]
  12. Wambugu, P. W., Ndjiondjop, M. N., & Henry, R. (2021). Genetics and genomics of African rice (Oryza glaberrima Steud) domestication. Rice, 14(1), 6.
    [CrossRef]   [Google Scholar]
  13. Ahmad, M. (2022). Genomics and transcriptomics to protect rice (Oryza sativa. L.) from abiotic stressors:-pathways to achieving zero hunger. Frontiers in Plant Science, 13, 1002596.
    [CrossRef]   [Google Scholar]
  14. Zhang, P., Wang, Y., Chachar, S., Tian, J., & Gu, X. (2020). eRice: a refined epigenomic platform for japonica and indica rice. Plant Biotechnology Journal, 18(8), 1642.
    [CrossRef]   [Google Scholar]
  15. Jin, L., Li, Z., & Zhang, J. (2024). Research on Plant Genomics and Breeding 2.0. International Journal of Molecular Sciences, 25(12), 6659.
    [Google Scholar]
  16. Li, J., Yang, J., Li, Y., & Ma, L. (2020). Current strategies and advances in wheat biology. The Crop Journal, 8(6), 879-891.
    [CrossRef]   [Google Scholar]
  17. Kumar, S., Jacob, S. R., Mir, R. R., Vikas, V. K., Kulwal, P., Chandra, T., ... & Singh, K. (2022). Indian Wheat genomics initiative for harnessing the potential of Wheat germplasm resources for breeding disease-resistant, nutrient-dense, and climate-resilient cultivars. Frontiers in genetics, 13, 834366.
    [CrossRef]   [Google Scholar]
  18. Shewry, P. R., Lovegrove, A., Wingen, L. U., & Griffiths, S. (2022). Opinion Exploiting genomics to improve the benefits of wheat: Prospects and limitations. Journal of Cereal Science, 105, 103444.
    [CrossRef]   [Google Scholar]
  19. Babu, P., Baranwal, D. K., Harikrishna, Pal, D., Bharti, H., Joshi, P., ... & Singh, A. (2020). Application of genomics tools in wheat breeding to attain durable rust resistance. Frontiers in Plant Science, 11, 567147.
    [CrossRef]   [Google Scholar]
  20. Kayess, O., Ashrafuzzaman, M., Khan, M. A. R., & Siddiqui, M. N. (2024). Functional phenomics and genomics: Unravelling heat stress responses in wheat. Plant Stress, 100601.
    [CrossRef]   [Google Scholar]
  21. Wang, Z., Miao, L., Chen, Y., Peng, H., Ni, Z., Sun, Q., & Guo, W. (2023). Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. Journal of genetics and genomics, 50(11), 846-860.
    [CrossRef]   [Google Scholar]
  22. Ahmed, H. I., Heuberger, M., Schoen, A., Koo, D. H., Quiroz-Chavez, J., Adhikari, L., ... & Krattinger, S. G. (2023). Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature, 620(7975), 830-838.
    [CrossRef]   [Google Scholar]
  23. Sun, C., Hu, H., Cheng, Y., Yang, X., Qiao, Q., Wang, C., ... & Chen, F. (2023). Genomics‐assisted breeding: the next‐generation wheat breeding era. Plant Breeding, 142(3), 259-268.
    [CrossRef]   [Google Scholar]
  24. Roychowdhury, R., Ghatak, A., Kumar, M., Samantara, K., Weckwerth, W., & Chaturvedi, P. (2024). Accelerating wheat improvement through trait characterization: advances and perspectives. Physiologia Plantarum, 176(5), e14544.
    [CrossRef]   [Google Scholar]
  25. Subedi, M., Ghimire, B., Bagwell, J. W., Buck, J. W., & Mergoum, M. (2023). Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities. Frontiers in Genetics, 13, 1032601.
    [CrossRef]   [Google Scholar]
  26. Boehm Jr, J., & Cai, X. (2024). Enrichment and diversification of the wheat genome via alien introgression. Plants, 13(3), 339.
    [CrossRef]   [Google Scholar]
  27. Rhodes, J. (2023). Genomic surveillance urgently needed to control wheat blast pandemic spreading across continents. Plos Biology, 21(4), e3002090.
    [CrossRef]   [Google Scholar]
  28. Ma, S., Wang, M., Wu, J., Guo, W., Chen, Y., Li, G., ... & Ni, F. (2021). WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular plant, 14(12), 1965-1968.
    [CrossRef]   [Google Scholar]
  29. Sharma, P. K., Ahmed, H. I., Heuberger, M., Koo, D. H., Quiroz-Chavez, J., Adhikari, L., ... & Tiwari, V. K. (2023). An online database for einkorn wheat to aid in gene discovery and functional genomics studies. Database, 2023, baad079.
    [CrossRef]   [Google Scholar]
  30. Sehgal, D., Dhakate, P., Ambreen, H., Shaik, K. H. B., Rathan, N. D., Anusha, N. M., ... & Vikram, P. (2023). Wheat omics: advancements and opportunities. Plants, 12(3), 426.
    [CrossRef]   [Google Scholar]
  31. Muntean, L., Ona, A., Berindean, I., Racz, I., & Muntean, S. (2022). Maize breeding: from domestication to genomic tools. Agronomy, 12(10), 2365.
    [CrossRef]   [Google Scholar]
  32. Wang, Y., Kang, H., Yao, J., Li, Z., Xia, X., Zhou, S., & Liu, W. (2022). An improved genome sequence resource of Bipolaris maydis, causal agent of Southern Corn Leaf Blight. Phytopathology®, 112(6), 1386-1390.
    [CrossRef]   [Google Scholar]
  33. Farooqi, M. Q. U., Nawaz, G., Wani, S. H., Choudhary, J. R., Rana, M., Sah, R. P., ... & Siddique, K. H. (2022). Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Frontiers in plant science, 13, 965878.
    [CrossRef]   [Google Scholar]
  34. Liu, J., Seetharam, A. S., Chougule, K., Ou, S., Swentowsky, K. W., Gent, J. I., ... & Dawe, R. K. (2020). Gapless assembly of maize chromosomes using long-read technologies. Genome Biology, 21, 1-17.
    [CrossRef]   [Google Scholar]
  35. Yang, N., & Yan, J. (2021). New genomic approaches for enhancing maize genetic improvement. Current Opinion in Plant Biology, 60, 101977.
    [CrossRef]   [Google Scholar]
  36. Hu, Y., Colantonio, V., Müller, B. S., Leach, K. A., Nanni, A., Finegan, C., ... & Resende Jr, M. F. (2021). Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications, 12(1), 1227.
    [CrossRef]   [Google Scholar]
  37. Dang, D., Guan, Y., Zheng, H., Zhang, X., Zhang, A., Wang, H., ... & Qin, L. (2023). Genome-wide association study and genomic prediction on plant architecture traits in sweet corn and waxy corn. plants, 12(2), 303.
    [CrossRef]   [Google Scholar]
  38. Waqas, M. A., Wang, X., Zafar, S. A., Noor, M. A., Hussain, H. A., Azher Nawaz, M., & Farooq, M. (2021). Thermal stresses in maize: effects and management strategies. Plants, 10(2), 293.
    [CrossRef]   [Google Scholar]
  39. Wu, B., Ren, W., Zhao, L., Li, Q., Sun, J., Chen, F., & Pan, Q. (2022). Genome-wide association study of root system architecture in maize. Genes, 13(2), 181.
    [CrossRef]   [Google Scholar]
  40. Talukder, Z. A., Muthusamy, V., Chhabra, R., Bhatt, V., Reddappa, S. B., Mishra, S. J., ... & Hossain, F. (2022). Enrichment of amylopectin in sub-tropically adapted maize hybrids through genomics-assisted introgression of waxy1 gene encoding granule-bound starch synthase (GBSS). Journal of Cereal Science, 105, 103443.
    [CrossRef]   [Google Scholar]
  41. McMillen, M. S., Mahama, A. A., Sibiya, J., Lübberstedt, T., & Suza, W. P. (2022). Improving drought tolerance in maize: Tools and techniques. Frontiers in Genetics, 13, 1001001.
    [CrossRef]   [Google Scholar]
  42. Woodhouse, M. R., Cannon, E. K., Portwood, J. L., Harper, L. C., Gardiner, J. M., Schaeffer, M. L., & Andorf, C. M. (2021). A pan-genomic approach to genome databases using maize as a model system. BMC plant biology, 21, 1-10.
    [CrossRef]   [Google Scholar]
  43. Zhou, Y., Li, Y., Luo, L., Zhang, D., Wang, X., Chen, Y., ... & Tang, Q. (2025). Maize‐Tripsacum‐Teosinte allopolyploid (MTP), a novel dwarf mutant inducer tool in maize. Plant Biotechnology Journal, 23(1), 112-127.
    [CrossRef]   [Google Scholar]
  44. Zenda, T., Liu, S., Dong, A., & Duan, H. (2021). Advances in cereal crop genomics for resilience under climate change. Life, 11(6), 502.
    [CrossRef]   [Google Scholar]
  45. Sun, Z., Lam, H. M., Lee, S. H., Li, X., & Kong, F. (2024). Soybean functional genomics: bridging theory and application. Molecular Breeding, 44(1), 2.
    [CrossRef]   [Google Scholar]
  46. Liu, S., Liu, Z., Hou, X., & Li, X. (2023). Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 43(4), 29.
    [CrossRef]   [Google Scholar]
  47. Kumar, V., Vats, S., Kumawat, S., Bisht, A., Bhatt, V., Shivaraj, S. M., ... & Sonah, H. (2021). Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.). Critical Reviews in Plant Sciences, 40(5), 398-421.
    [CrossRef]   [Google Scholar]
  48. Kim, W. J., Kang, B. H., Kang, S., Shin, S., Chowdhury, S., Jeong, S. C., ... & Ha, B. K. (2023). A genome-wide association study of protein, oil, and amino acid content in wild soybean (Glycine soja). Plants, 12(8), 1665.
    [CrossRef]   [Google Scholar]
  49. Jia, H., Han, D., Yan, X., Zhang, L., Liang, J., & Lu, W. (2024). Genome-wide association and RNA-Seq analyses reveal a potential candidate gene related to oil content in soybean seeds. International Journal of Molecular Sciences, 25(15), 8134.
    [CrossRef]   [Google Scholar]
  50. Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., ... & Tian, Z. (2020). Pan-genome of wild and cultivated soybeans. Cell, 182(1), 162-176.
    [CrossRef]   [Google Scholar]
  51. Du, H., Fang, C., Li, Y., Kong, F., & Liu, B. (2023). Understandings and future challenges in soybean functional genomics and molecular breeding. Journal of Integrative Plant Biology, 65(2), 468-495.
    [CrossRef]   [Google Scholar]
  52. Bhat, J. A., & Yu, D. (2021). High‐throughput NGS‐based genotyping and phenotyping: Role in genomics‐assisted breeding for soybean improvement. Legume Science, 3(3), e81.
    [CrossRef]   [Google Scholar]
  53. Razzaq, M. K., Babur, M. N., Awan, M. J. A., Raza, G., Mobeen, M., Aslam, A., & Siddique, K. H. (2024). Revolutionizing soybean genomics: How CRISPR and advanced sequencing are unlocking new potential. Functional & Integrative Genomics, 24(5), 153.
    [CrossRef]   [Google Scholar]
  54. Johnson, K. H., Krishna, T. A., Dash, M., Thiyageshwari, S., Ceasar, S. A., & Selvi, D. (2023). Food and nutritional security: innovative approaches for improving micronutrient use efficiency in soybean (Glycine max (L.) Merrill) under hostile soils. Journal of Soil Science and Plant Nutrition, 23(1), 56-70.
    [CrossRef]   [Google Scholar]
  55. Brown, A. V., Conners, S. I., Huang, W., Wilkey, A. P., Grant, D., Weeks, N. T., ... & Nelson, R. T. (2021). A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research, 49(D1), D1496-D1501.
    [CrossRef]   [Google Scholar]
  56. Bhat, R. S., Shirasawa, K., & Chavadi, S. D. (2022). Genome‐wide structural and functional features of single nucleotide polymorphisms revealed from the whole genome resequencing of 179 accessions of Arachis. Physiologia Plantarum, 174(1), e13623.
    [CrossRef]   [Google Scholar]
  57. Li, S., Xue, X., Gao, M., Wang, N., Cui, X., Sang, S., ... & Wang, Z. (2021). Genome resource for peanut web blotch causal agent Peyronellaea arachidicola strain YY187. Plant Disease, 105(4), 1177-1178.
    [CrossRef]   [Google Scholar]
  58. Raza, A., Chen, H., Zhang, C., Zhuang, Y., Sharif, Y., Cai, T., ... & Zhuang, W. (2024). Designing future peanut: the power of genomics-assisted breeding. Theoretical and Applied Genetics, 137(3), 66.
    [CrossRef]   [Google Scholar]
  59. Xue, H., Zhao, K., Zhao, K., Han, S., Chitikineni, A., Zhang, L., ... & Yin, D. (2024). A near complete genome of Arachis monticola, an allotetraploid wild peanut. Plant biotechnology journal, 22(8), 2110.
    [CrossRef]   [Google Scholar]
  60. Ma, J., Zhao, Y., Chen, H., Fu, C., Zhu, L., Zhou, X., ... & Zhao, C. (2020). Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electronic Journal of Biotechnology, 44, 25-32.
    [CrossRef]   [Google Scholar]
  61. Tang, Y., Huang, J., Ji, H., Pan, L., Hu, C., Qiu, X., ... & Qiao, L. (2022). Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Science, 319, 111247.
    [CrossRef]   [Google Scholar]
  62. Huang, R., Li, H., Gao, C., Yu, W., & Zhang, S. (2023). Advances in omics research on peanut response to biotic stresses. Frontiers in plant science, 14, 1101994.
    [CrossRef]   [Google Scholar]
  63. Cai, T., Sharif, Y., Zhuang, Y., Yang, Q., Chen, X., Chen, K., ... & Zhuang, W. (2023). In-silico identification and characterization of O-methyltransferase gene family in peanut (Arachis hypogaea L.) reveals their putative roles in development and stress tolerance. Frontiers in Plant Science, 14, 1145624.
    [CrossRef]   [Google Scholar]
  64. Newman, C. S., Andres, R. J., Youngblood, R. C., Campbell, J. D., Simpson, S. A., Cannon, S. B., ... & Dunne, J. C. (2023). Initiation of genomics-assisted breeding in Virginia-type peanuts through the generation of a de novo reference genome and informative markers. Frontiers in Plant Science, 13, 1073542.
    [CrossRef]   [Google Scholar]
  65. Wang, Z., Lei, Y., & Liao, B. (2024). Omics-driven advances in the understanding of regulatory landscape of peanut seed development. Frontiers in Plant Science, 15, 1393438.
    [CrossRef]   [Google Scholar]
  66. Zhang, T., Wang, S., Chen, J., Zhu, S., Zhu, Q., & Zhao, T. (2024). Advances in Cotton Genomics, Genetics and Breeding. Plants, 13(18), 2579.
    [CrossRef]   [Google Scholar]
  67. Manivannan, A., & Cheeran Amal, T. (2023). Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Molecular Biology Reports, 50(8), 6937-6953.
    [CrossRef]   [Google Scholar]
  68. Nadeem, S., Riaz Ahmed, S., Luqman, T., Tan, D. K., Maryum, Z., Akhtar, K. P., ... & Liu, Y. (2024). A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Frontiers in Genetics, 15, 1306469.
    [CrossRef]   [Google Scholar]
  69. Wang, P., Abbas, M., He, J., Zhou, L., Cheng, H., & Guo, H. (2024). Advances in genome sequencing and artificially induced mutation provides new avenues for cotton breeding. Frontiers in Plant Science, 15, 1400201.
    [CrossRef]   [Google Scholar]
  70. Liu, H., Zeng, Q., Yalimaimaiti, N., Wang, W., Zhang, R., & Yao, J. (2021). Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton. Molecular Genetics and Genomics, 296, 1287-1298.
    [CrossRef]   [Google Scholar]
  71. Cohen, Z. P., Perkin, L. C., Wagner, T. A., Liu, J., Bell, A. A., Arick, M. A., ... & Suh, C. P. (2024). Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3: Genes, Genomes, Genetics, 14(9), jkae140.
    [CrossRef]   [Google Scholar]
  72. Naoumkina, M., & Kim, H. J. (2023). Bridging molecular genetics and genomics for cotton fiber quality improvement. Crop Science, 63(4), 1794-1815.
    [CrossRef]   [Google Scholar]
  73. Sharif, I., Aleem, S., Junaid, J. A., Ali, Z., Aleem, M., Shahzad, R., ... & Ellahi, F. (2024). Multiomics approaches to explore drought tolerance in cotton. Journal of Cotton Research, 7(1), 32.
    [CrossRef]   [Google Scholar]
  74. Wen, X., Chen, Z., Yang, Z., Wang, M., Jin, S., Wang, G., ... & Zhu, Y. (2023). A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Science China Life Sciences, 66(10), 2214-2256.
    [CrossRef]   [Google Scholar]
  75. Yang, Z., Gao, C., Zhang, Y., Yan, Q., Hu, W., Yang, L., ... & Li, F. (2023). Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 65(2), 548-569.
    [CrossRef]   [Google Scholar]
  76. Wang, W., Yang, X., Zeng, J., Liang, A., Liu, D., Wang, W., ... & Xiao, Y. (2024). Construction of ethyl methane sulfonate mutant library in G. arboreum and rapid identification of mutant genes via repeated re-sequencing. Industrial Crops and Products, 213, 118373.
    [CrossRef]   [Google Scholar]
  77. Shen, C., Cao, Z., Xu, Z., Ouyang, L., Zhang, X., Guo, Z., ... & Huang, W. (2023). Population genomics unravels the characteristic relationship between introgression and geographical distribution in upland cotton. Agronomy, 13(7), 1781.
    [CrossRef]   [Google Scholar]
  78. Yang, Z., Qanmber, G., Wang, Z., Yang, Z., & Li, F. (2020). Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends in Plant Science, 25(5), 488-500.
    [CrossRef]   [Google Scholar]
  79. Zhang, Z., Chai, M., Yang, Z., Yang, Z., & Fan, L. (2022). GRAND: an integrated genome, transcriptome resources, and gene network database for gossypium. Frontiers in Plant Science, 13, 773107.
    [CrossRef]   [Google Scholar]
  80. Liu, S., Cheng, H., Zhang, Y., He, M., Zuo, D., Wang, Q., ... & Song, G. (2024). Fingerprint Finder: Identifying Genomic Fingerprint Sites in Cotton Cohorts for Genetic Analysis and Breeding Advancement. Genes, 15(3), 378.
    [CrossRef]   [Google Scholar]
  81. Cao, W., Wang, P., Yang, L., Fang, Z., Zhang, Y., Zhuang, M., ... & Ji, J. (2021). Carotenoid biosynthetic genes in cabbage: Genome-wide identification, evolution, and expression analysis. Genes, 12(12), 2027.
    [CrossRef]   [Google Scholar]
  82. Ma, W., Zhang, P., Zhao, J., & Hong, Y. (2023). Chinese cabbage: an emerging model for functional genomics in leafy vegetable crops. Trends in Plant Science, 28(5), 515-518.
    [CrossRef]   [Google Scholar]
  83. Lv, H., Wang, Y., Han, F., Ji, J., Fang, Z., Zhuang, M., ... & Yang, L. (2020). A high-quality reference genome for cabbage obtained with SMRT reveals novel genomic features and evolutionary characteristics. Scientific reports, 10(1), 12394.
    [CrossRef]   [Google Scholar]
  84. Xu, Y., Xing, M., Song, L., Yan, J., Lu, W., & Zeng, A. (2021). Genome-wide analysis of simple sequence repeats in cabbage (Brassica oleracea L.). Frontiers in plant science, 12, 726084.
    [CrossRef]   [Google Scholar]
  85. Yin, L., Sun, Y., Chen, X., Liu, J., Feng, K., Luo, D., ... & Zhao, J. (2023). Genome-wide analysis of the hd-zip gene family in Chinese cabbage (Brassica rapa subsp. pekinensis) and the expression pattern at high temperatures and in carotenoids regulation. Agronomy, 13(5), 1324.
    [CrossRef]   [Google Scholar]
  86. Ji, G., Long, Y., Cai, G., Yan, G., Wu, J., Zhang, F., ... & Wu, X. (2023). Whole-genome comparison reveals structural variations behind heading leaf trait in Brassica oleracea. International Journal of Molecular Sciences, 24(4), 4063.
    [CrossRef]   [Google Scholar]
  87. Wang, P., Cao, W., Yang, L., Zhang, Y., Fang, Z., Zhuang, M., ... & Ji, J. (2023). Glucosinolate biosynthetic genes of cabbage: Genome-wide identification, evolution, and expression analysis. Genes, 14(2), 476.
    [CrossRef]   [Google Scholar]
  88. Xing, Y., Jiang, Y., Muhammad, A. R., & Song, J. (2024). Genome-wide identification of pseudo-response regulator (PRR) family members in cabbage (Brassica oleracea var. capitata L.) and their expression in response to abiotic stress. The Journal of Horticultural Science and Biotechnology, 99(2), 168-178.
    [CrossRef]   [Google Scholar]
  89. Xu, Y., Xing, M., Li, J., Zeng, A., Song, L., & Yan, J. (2022). Complete chloroplast genome sequence and variation analysis of Brassica oleracea L. Acta Physiologiae Plantarum, 44(10), 106.
    [CrossRef]   [Google Scholar]
  90. Chen, L., Ren, W., Zhang, B., Chen, W., Fang, Z., Yang, L., ... & Zhang, Y. (2021). Organelle comparative genome analysis reveals novel alloplasmic male sterility with orf112 in Brassica oleracea L. International Journal of Molecular Sciences, 22(24), 13230.
    [CrossRef]   [Google Scholar]
  91. Li, Z., Li, Y., Liu, T., Zhang, C., Xiao, D., & Hou, X. (2022). Non-heading Chinese cabbage database: An open-access platform for the genomics of Brassica campestris (syn. Brassica rapa) ssp. chinensis. Plants, 11(8), 1005.
    [CrossRef]   [Google Scholar]
  92. Hao, J. N., Wang, Y. H., Duan, A. Q., Liu, J. X., Feng, K., & Xiong, A. S. (2020). NAC family transcription factors in carrot: genomic and transcriptomic analysis and responses to abiotic stresses. DNA and Cell Biology, 39(5), 816-827.
    [CrossRef]   [Google Scholar]
  93. Macko-Podgórni, A., Stelmach, K., Kwolek, K., Machaj, G., Ellison, S., Senalik, D. A., ... & Grzebelus, D. (2020). Mining for candidate genes controlling secondary growth of the carrot storage root. International Journal of Molecular Sciences, 21(12), 4263.
    [CrossRef]   [Google Scholar]
  94. Duran, S. T., & Ipek, A. (2022). Identification of SNP markers linked to Rf locus in carrot using GBS. Turkish Journal of Agriculture and Forestry, 46(6), 898-907.
    [CrossRef]   [Google Scholar]
  95. Liu, X., Zhao, D., Ou, C., Hao, W., Zhang, Y., He, Y., ... & Zhuang, F. (2023). Draft genome sequence of carrot Alternaria leaf blight pathogen Alternaria dauci. Plant Disease, 107(7), 2197-2200.
    [CrossRef]   [Google Scholar]
  96. Zhao, D., Zhuang, F., Ou, C., Zhang, Y., & Liu, X. (2023). Complete genome sequence of the carrot black rot pathogen Alternaria radicina isolate CBR2. Microbial Pathogenesis, 185, 106421.
    [CrossRef]   [Google Scholar]
  97. Zhe, W. U., Xuan, Y. A. N. G., Yu-xuan, Z. H. A. O., & Li, J. I. A. (2022). Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing. Journal of Integrative Agriculture, 21(12), 3589-3599.
    [CrossRef]   [Google Scholar]
  98. Rolling, W. R., Senalik, D., Iorizzo, M., Ellison, S., Van Deynze, A., & Simon, P. W. (2022). CarrotOmics: A genetics and comparative genomics database for carrot (Daucus carota). Database, 2022, baac079.
    [CrossRef]   [Google Scholar]
  99. Chen, Z., Yu, L., Liu, W., Zhang, J., Wang, N., & Chen, X. (2021). Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 162, 267-279.
    [CrossRef]   [Google Scholar]
  100. Liu, J., Shen, F., Xiao, Y., Fang, H., Qiu, C., Li, W., ... & Han, Z. (2020). Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC genomics, 21, 1-16.
    [CrossRef]   [Google Scholar]
  101. Yao, F., Song, C., Wang, H., Song, S., Jiao, J., Wang, M., ... & Bai, T. (2020). Genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple. Frontiers in Genetics, 11, 609184.
    [CrossRef]   [Google Scholar]
  102. Verma, S., Dubey, N., Mishra, V., Kumar, S., Sharma, R., Sharma, S., ... & Thakur, A. K. (2024). Functional Genomics of Salt and Drought Stress Tolerance in the Temperate Crop Apple (Malus domestica). Journal of Plant Growth Regulation, 43(11), 3941-3957.
    [CrossRef]   [Google Scholar]
  103. Khodadadi, F., Luciano-Rosario, D., Gottschalk, C., Jurick, W. M., & Aćimović, S. G. (2024). Unveiling the Arsenal of Apple Bitter Rot Fungi: Comparative Genomics Identifies Candidate Effectors, CAZymes, and Biosynthetic Gene Clusters in Colletotrichum Species. Journal of Fungi, 10(7), 493.
    [CrossRef]   [Google Scholar]
  104. Amaral Carneiro, G., Calì, M., Cappelletti, E., Baroncelli, R., & Prodi, A. (2023). Draft genome sequence of the apple pathogen Colletotrichum chrysophilum strain M932. Journal of Plant Pathology, 105(3), 1141-1143.
    [CrossRef]   [Google Scholar]
  105. Shen, F., Bianco, L., Wu, B., Tian, Z., Wang, Y., Wu, T., ... & Zhang, X. (2022). A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. Journal of Advanced Research, 42, 149-162.
    [CrossRef]   [Google Scholar]
  106. Kumar, S., Molloy, C., Hunt, M., Deng, C. H., Wiedow, C., Andre, C., ... & McGhie, T. (2022). GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple. Horticulture Research, 9, uhac218.
    [CrossRef]   [Google Scholar]
  107. Keller, B., Jung, M., Bühlmann-Schütz, S., Hodel, M., Studer, B., Broggini, G. A., & Patocchi, A. (2024). The genetic basis of apple shape and size unraveled by digital phenotyping. G3: Genes, Genomes, Genetics, 14(5), jkae045.
    [CrossRef]   [Google Scholar]
  108. Peng, H., Yi, Y., Li, J., Qing, Y., Zhai, X., Deng, Y., ... & Zheng, Y. (2024). A haplotype-resolved genome assembly of Malus domestica ‘Red Fuji’. Scientific Data, 11(1), 592.
    [CrossRef]   [Google Scholar]
  109. Minamikawa, M. F., Kunihisa, M., Moriya, S., Shimizu, T., Inamori, M., & Iwata, H. (2024). Genomic prediction and genome-wide association study using combined genotypic data from different genotyping systems: application to apple fruit quality traits. Horticulture Research, 11(7), uhae131.
    [CrossRef]   [Google Scholar]
  110. Minamikawa, M. F., Kunihisa, M., Noshita, K., Moriya, S., Abe, K., Hayashi, T., ... & Iwata, H. (2021). Tracing founder haplotypes of Japanese apple varieties: application in genomic prediction and genome-wide association study. Horticulture Research, 8.
    [CrossRef]   [Google Scholar]
  111. Deng, Y., Liu, S., Zhang, Y., Tan, J., Li, X., Chu, X., ... & Zhang, X. (2022). A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Molecular plant, 15(8), 1268-1284.
    [CrossRef]   [Google Scholar]
  112. Renner, S. S., Wu, S., Pérez-Escobar, O. A., Silber, M. V., Fei, Z., & Chomicki, G. (2021). A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proceedings of the National Academy of Sciences, 118(23), e2101486118.
    [CrossRef]   [Google Scholar]
  113. Yang, J., Zhang, J., Du, H., Zhao, H., Mao, A., Zhang, X., ... & Xu, Y. (2022). Genetic relationship and pedigree of Chinese watermelon varieties based on diversity of perfect SNPs. Horticultural Plant Journal, 8(4), 489-498.
    [CrossRef]   [Google Scholar]
  114. Yang, T., Zhang, P., Pan, J., Amanullah, S., Luan, F., Han, W., ... & Wang, X. (2022). Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in watermelon. International Journal of Molecular Sciences, 23(2), 642.
    [CrossRef]   [Google Scholar]
  115. Maragal, S., Nagesh, G. C., Reddy, D. L., & Rao, E. S. (2022). QTL mapping identifies novel loci and putative candidate genes for rind traits in watermelon. 3 Biotech, 12(2), 46.
    [CrossRef]   [Google Scholar]
  116. Mashilo, J., Shimelis, H., Maja, D., & Ngwepe, R. M. (2023). Meta-analysis of qualitative and quantitative trait variation in sweet watermelon and citron watermelon genetic resources. Genetic Resources and Crop Evolution, 70(1), 13-35.
    [CrossRef]   [Google Scholar]
  117. Patel, T., Quesada-Ocampo, L. M., Wehner, T. C., Bhatta, B. P., Correa, E., & Malla, S. (2023). Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae, 9(10), 1132.
    [CrossRef]   [Google Scholar]
  118. Kumar, S., Rajendran, K., Kumar, J., Hamwieh, A., & Baum, M. (2015). Current knowledge in lentil genomics and its application for crop improvement. Frontiers in plant science, 6, 78.
    [CrossRef]   [Google Scholar]
  119. Ali, F., Zhao, Y., Ali, A., Waseem, M., Arif, M. A., Shah, O. U., ... & Wang, Z. (2024). Omics-driven strategies for developing saline-smart lentils: a comprehensive review. International Journal of Molecular Sciences, 25(21), 11360.
    [CrossRef]   [Google Scholar]
  120. Saini, S., Sharma, P., Sharma, J., Pooja, P., & Sharma, A. (2024). Drought stress in Lens culinaris: effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches. Physiology and Molecular Biology of Plants, 30(2), 227-247.
    [CrossRef]   [Google Scholar]
  121. Dissanayake, R., Cogan, N. O., Smith, K. F., & Kaur, S. (2021). Application of genomics to understand salt tolerance in lentil. Genes, 12(3), 332.
    [CrossRef]   [Google Scholar]
  122. Roy, A., Sahu, P. K., Das, C., Bhattacharyya, S., Raina, A., & Mondal, S. (2023). Conventional and new-breeding technologies for improving disease resistance in lentil (Lens culinaris Medik). Frontiers in Plant Science, 13, 1001682.
    [CrossRef]   [Google Scholar]
  123. Patterson, E. L., Saski, C., Küpper, A., Beffa, R., & Gaines, T. A. (2019). Omics potential in herbicide-resistant weed management. Plants, 8(12), 607.
    [CrossRef]   [Google Scholar]
  124. Huang, P., Hameed, R., Abbas, M., Balooch, S., Alharthi, B., Du, Y., ... & Du, D. (2023). Integrated omic techniques and their genomic features for invasive weeds. Functional & Integrative Genomics, 23(1), 44.
    [CrossRef]   [Google Scholar]
  125. Montgomery, J., Morran, S., MacGregor, D. R., McElroy, J. S., Neve, P., Neto, C., ... & Gaines, T. A. (2024). Current status of community resources and priorities for weed genomics research. Genome biology, 25(1), 139.
    [CrossRef]   [Google Scholar]
  126. Li, L. Z., Xu, Z. G., Chang, T. G., Wang, L., Kang, H., Zhai, D., ... & Wang, J. W. (2023). Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nature Communications, 14(1), 290.
    [CrossRef]   [Google Scholar]
  127. Chen, K., Yang, H., Peng, Y., Liu, D., Zhang, J., Zhao, Z., ... & Wang, L. (2023). Genomic analyses provide insights into the polyploidization‐driven herbicide adaptation in Leptochloa weeds. Plant Biotechnology Journal, 21(8), 1642-1658.
    [CrossRef]   [Google Scholar]
  128. Xia, X., Cheng, X., Li, R., Yao, J., Li, Z., & Cheng, Y. (2021). Advances in application of genome editing in tomato and recent development of genome editing technology. Theoretical and Applied Genetics, 134(9), 2727-2747.
    [CrossRef]   [Google Scholar]
  129. Zhang, P., Qiu, X., Wang, L., & Zhao, F. (2022). Progress in genomic mating in domestic animals. Animals, 12(18), 2306.
    [CrossRef]   [Google Scholar]
  130. Li, X., Chen, X., Wang, Q., Yang, N., & Sun, C. (2024). Integrating bioinformatics and machine learning for genomic prediction in chickens. Genes, 15(6), 690.
    [CrossRef]   [Google Scholar]
  131. Wang, Y. M., Ye, L. Q., Wang, M. S., Zhang, J. J., Khederzadeh, S., Irwin, D. M., ... & Wu, D. D. (2022). Unveiling the functional and evolutionary landscape of RNA editing in chicken using genomics and transcriptomics. Zoological research, 43(6), 1011.
    [CrossRef]   [Google Scholar]
  132. Zhou, H., Baltenweck, I., Dekkers, J., Gallardo, R., Kayang, B. B., Kelly, T., ... & Lamont, S. J. (2024). Feed the Future Innovation Lab for Genomics to Improve Poultry: a holistic approach to improve indigenous chicken production focusing on resilience to Newcastle disease. World's Poultry Science Journal, 80(2), 273-297.
    [CrossRef]   [Google Scholar]
  133. Smith, J. (2019). Genomics of avian viral infections. Genes, 10(10), 814.
    [CrossRef]   [Google Scholar]
  134. Feng, A., Akter, S., Leigh, S. A., Wang, H., Pharr, G. T., Evans, J., ... & Wan, X. F. (2023). Genomic diversity, pathogenicity and antimicrobial resistance of Escherichia coli isolated from poultry in the southern United States. BMC microbiology, 23(1), 15.
    [CrossRef]   [Google Scholar]
  135. Olaniyan, O. F., Oladejo, O. A., Adeola, A. C., Bello, S. F., Bashiru, H. A., & Oseni, S. O. (2024). Integration of genomics into community-based breeding programmes for chickens: an overview of opportunities, challenges, and potential benefits. World's Poultry Science Journal, 80(3), 977-997.
    [CrossRef]   [Google Scholar]
  136. Wadood, A. A., & Zhang, X. (2024). The Omics Revolution in Understanding Chicken Reproduction: A Comprehensive Review. Current Issues in Molecular Biology, 46(6), 6248-6266.
    [CrossRef]   [Google Scholar]
  137. Long, J. A. (2020). The ‘omics’ revolution: Use of genomic, transcriptomic, proteomic and metabolomic tools to predict male reproductive traits that impact fertility in livestock and poultry. Animal Reproduction Science, 220, 106354.
    [CrossRef]   [Google Scholar]
  138. Nematbakhsh, S., Pei, C. P., Nordin, N., Selamat, J., Idris, L. H., & Razis, A. F. A. (2024). Identification and validation of novel breed-specific biomarker for the purpose of village chicken authentication using genomics approaches. Poultry Science, 103(11), 104128.
    [CrossRef]   [Google Scholar]
  139. Barros, C. P., Derks, M. F., Mohr, J., Wood, B. J., Crooijmans, R. P., Megens, H. J., ... & Groenen, M. A. (2023). A new haplotype-resolved turkey genome to enable turkey genetics and genomics research. GigaScience, 12, giad051.
    [CrossRef]   [Google Scholar]
  140. Li, M., Sun, C., Xu, N., Bian, P., Tian, X., Wang, X., ... & Yang, N. (2022). De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for thousands of core genes on microchromosomes and subtelomeric regions. Molecular Biology and Evolution, 39(4), msac066.
    [CrossRef]   [Google Scholar]
  141. Che, T., Li, J., Li, X., Wang, Z., Zhang, X., Yang, W., ... & Zhang, W. (2024). Haplotype-resolved assembly of the mule duck genome using high-fidelity sequencing technology. Plos one, 19(7), e0305914.
    [CrossRef]   [Google Scholar]
  142. Guo, X., He, X. X., Chen, H., Wang, Z. C., Li, H. F., Wang, J. X., ... & Jiang, R. S. (2021). Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses. Zoological Research, 42(1), 43.
    [CrossRef]   [Google Scholar]
  143. Chang, G., Yuan, X., Guo, Q., Bai, H., Cao, X., Liu, M., ... & Chen, G. (2023). The first crested duck genome reveals clues to genetic compensation and crest cushion formation. Genomics, Proteomics & Bioinformatics, 21(3), 483-500.
    [CrossRef]   [Google Scholar]
  144. Lin, R., Li, H., Lin, W., Yang, F., Bao, X., Pan, C., ... & Lin, W. (2024). Whole-genome selection signature differences between Chaohu and Ji’an red ducks. BMC genomics, 25(1), 522.
    [CrossRef]   [Google Scholar]
  145. Du, X., Lai, S., Zhao, W., Xu, X., Xu, W., Zeng, T., ... & Lu, L. (2022). Single-cell RNA sequencing revealed the liver heterogeneity between egg-laying duck and ceased-laying duck. BMC genomics, 23(1), 857.
    [CrossRef]   [Google Scholar]
  146. Zhang, X., Zhu, T., Wang, L., Lv, X., Yang, W., Qu, C., ... & Qu, L. (2023). Genome-wide association study reveals the genetic basis of duck plumage colors. Genes, 14(4), 856.
    [CrossRef]   [Google Scholar]
  147. Yu, S., Liu, Z., Li, M., Zhou, D., Hua, P., Cheng, H., ... & Zhou, Z. (2023). Resequencing of a Pekin duck breeding population provides insights into the genomic response to short-term artificial selection. Gigascience, 12, giad016.
    [CrossRef]   [Google Scholar]
  148. Wen, J., Li, H., Wang, H., Yu, J., Zhu, T., Zhang, J., ... & Qu, L. (2023). Origins, timing and introgression of domestic geese revealed by whole genome data. Journal of animal science and biotechnology, 14(1), 26.
    [CrossRef]   [Google Scholar]
  149. Zhang, Y., Ni, H., Xie, H., Yin, Y., Zheng, J., Dong, L., ... & Sun, X. (2022). De novo assembly of a wild swan goose (Anser cygnoides) genome. Animal Genetics, 53(6), 878-880.
    [CrossRef]   [Google Scholar]
  150. Zhou, Y., Mabrouk, I., Ma, J., Liu, Q., Song, Y., Xue, G., ... & Sun, Y. (2024). Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development. Poultry Science, 103(9), 103933.
    [CrossRef]   [Google Scholar]
  151. Liu, J., Xiao, Y., Ren, P., Zhang, S., Liu, Y., & Zhu, M. (2023). Integrating genomics and transcriptomics to identify candidate genes for high egg production in Wulong geese (Anser cygnoides orientalis). BMC genomics, 24(1), 481.
    [CrossRef]   [Google Scholar]
  152. Zhang, L., Li, H., Tang, B., Zhao, X., Wu, Y., Jiang, T., ... & Wang, L. (2023). Genomic signatures reveal selection in Chinese and European domesticated geese. Animal Genetics, 54(6), 763-771.
    [CrossRef]   [Google Scholar]
  153. Guinan, F. L., Wiggans, G. R., Norman, H. D., Dürr, J. W., Cole, J. B., Van Tassell, C. P., ... & Lourenco, D. (2023). Changes in genetic trends in US dairy cattle since the implementation of genomic selection. Journal of dairy science, 106(2), 1110-1129.
    [CrossRef]   [Google Scholar]
  154. Kertz, N. C., Banerjee, P., Dyce, P. W., & Diniz, W. J. (2023). Harnessing genomics and transcriptomics approaches to improve female fertility in beef cattle—a review. Animals, 13(20), 3284.
    [CrossRef]   [Google Scholar]
  155. Du, X., Sun, Y., Fu, T., Gao, T., & Zhang, T. (2024). Research Progress and Applications of Bovine Genome in the Tribe Bovini. Genes, 15(4), 509.
    [CrossRef]   [Google Scholar]
  156. Tian, R., Mahmoodi, M., Tian, J., Esmailizadeh Koshkoiyeh, S., Zhao, M., Saminzadeh, M., ... & Esmailizadeh, A. (2024). Leveraging Functional Genomics for Understanding Beef Quality Complexities and Breeding Beef Cattle for Improved Meat Quality. Genes, 15(8), 1104.
    [CrossRef]   [Google Scholar]
  157. Zhao, J., Wang, C., Hu, J., Ma, R., Yu, B., Zhao, W., ... & Zhang, J. (2024). Integrated metagenomics and metabolomics analyses revealed biomarkers in β-casein A2A2-type cows. Frontiers in Veterinary Science, 11, 1438717.
    [CrossRef]   [Google Scholar]
  158. Billa, P. A., Faulconnier, Y., Ye, T., Bourdon, C., Pires, J. A., & Leroux, C. (2021). Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS One, 16(4), e0248680.
    [CrossRef]   [Google Scholar]
  159. Zavadilová, L., Kašná, E., Krupová, Z., & Klímová, A. (2021). Health traits in current dairy cattle breeding: A review. Czech Journal of Animal Science, 66(7), 235-250. https://
    [CrossRef]   [Google Scholar]
  160. Yin, S., Li, Z., Yang, F., Guo, H., Zhao, Q., Zhang, Y., ... & He, J. (2023). A comprehensive genomic analysis of Chinese indigenous ningxiang pigs: genomic breed compositions, runs of homozygosity, and beyond. International Journal of Molecular Sciences, 24(19), 14550.
    [CrossRef]   [Google Scholar]
  161. Li, G., Liu, Y., Feng, X., Diao, S., Zhong, Z., Li, B., ... & Zhang, Z. (2024). Integrating Multiple Database Resources to Elucidate the Gene Flow in Southeast Asian Pig Populations. International Journal of Molecular Sciences, 25(11), 5689.
    [CrossRef]   [Google Scholar]
  162. Piórkowska, K., & Ropka-Molik, K. (2024). Trends and Prospects in Pig Genomics and Genetics. Genes, 15(10), 1292.
    [CrossRef]   [Google Scholar]
  163. Johnsson, M., Hickey, J. M., & Jungnickel, M. K. (2024). Building in vitro tools for livestock genomics: chromosomal variation within the PK15 cell line. BMC genomics, 25(1), 49.
    [CrossRef]   [Google Scholar]
  164. Flack, N., Hughes, L., Cassens, J., Enriquez, M., Gebeyehu, S., Alshagawi, M., ... & Faulk, C. (2024). The genome of Przewalski’s horse (Equus ferus przewalskii). G3: Genes, Genomes, Genetics, 14(8), jkae113.
    [CrossRef]   [Google Scholar]
  165. Littiere, T. O., Castro, G. H., Rodriguez, M. D. P. R., Bonafé, C. M., Magalhães, A. F., Faleiros, R. R., ... & Verardo, L. L. (2020). Identification and functional annotation of genes related to horses’ performance: from GWAS to post-GWAS. Animals, 10(7), 1173.
    [CrossRef]   [Google Scholar]
  166. Polak, G., Gurgul, A., Jasielczuk, I., Szmatoła, T., Krupiński, J., & Bugno-Poniewierska, M. (2021). Suitability of pedigree information and genomic methods for analyzing inbreeding of Polish cold-blooded horses covered by conservation programs. Genes, 12(3), 429.
    [CrossRef]   [Google Scholar]
  167. Fröhlich, D. E., Wallner, B., Juras, R., Cothran, E. G., & Velie, B. D. (2024). Relatedness and genomic inbreeding in a sample of Timor ponies. Journal of Equine Veterinary Science, 133, 105016.
    [CrossRef]   [Google Scholar]
  168. Saleem, A., Khan, A. A., Dar, M. A., Ganaie, A. M., Beigh, Y. A., & Ahmad, S. M. (2022). Nutrigenomics in livestock sector and its human-animal interface-a review. Vet. Anim. Sci, 17, 100262.
    [Google Scholar]
  169. Taylor, J. F., Schnabel, R. D., & Sutovsky, P. (2018). Genomics of bull fertility. animal, 12(s1), s172-s183.
    [CrossRef]   [Google Scholar]
  170. Zhang, F., Shi, C., He, Q., Zhu, L., Zhao, J., Yao, W., ... & Luo, J. (2024). Integrated analysis of genomics and transcriptomics revealed the genetic basis for goaty flavor formation in goat milk. Genomics, 116(4), 110873.
    [CrossRef]   [Google Scholar]
  171. Li, C., Wu, Y., Chen, B., Cai, Y., Guo, J., Leonard, A. S., ... & Wang, X. (2022). Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Molecular Biology and Evolution, 39(12), msac253.
    [CrossRef]   [Google Scholar]
  172. VarGoats Consortium, Nijman, I. J., Rosen, B. D., Bardou, P., Faraut, T., Cumer, T., ... & Anton, I. (2022). Geographical contrasts of Y‐chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Molecular ecology, 31(16), 4364-4380.
    [CrossRef]   [Google Scholar]
  173. Negro, A., Cesarani, A., Cortellari, M., Bionda, A., Fresi, P., Macciotta, N. P. P., ... & Crepaldi, P. (2024). A comparison of genetic and genomic breeding values in Saanen and Alpine goats. animal, 18(4), 101118.
    [CrossRef]   [Google Scholar]
  174. Denoyelle, L., Talouarn, E., Bardou, P., Colli, L., Alberti, A., Danchin, C., ... & Tosser-Klopp, G. (2021). VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics Selection Evolution, 53(1), 86.
    [CrossRef]   [Google Scholar]
  175. Lyons, A., Brown, J., & Davenport, K. M. (2024). Single-cell sequencing technology in ruminant livestock: challenges and opportunities. Current Issues in Molecular Biology, 46(6), 5291-5306.
    [CrossRef]   [Google Scholar]
  176. Park, J. S., Lee, K. Y., & Han, J. Y. (2020). Precise genome editing in poultry and its application to industries. Genes, 11(10), 1182.
    [CrossRef]   [Google Scholar]
  177. Alvarenga, M., D’Elia, A. K. P., Rocha, G., Arantes, C. A., Henning, F., de Vasconcelos, A. T. R., & Solé-Cava, A. M. (2024). Mitochondrial genome structure and composition in 70 fishes: a key resource for fisheries management in the South Atlantic. BMC genomics, 25(1), 215.
    [CrossRef]   [Google Scholar]
  178. Papa, Y., Wellenreuther, M., Morrison, M. A., & Ritchie, P. A. (2023). Genome assembly and isoform analysis of a highly heterozygous New Zealand fisheries species, the tarakihi (Nemadactylus macropterus). G3, 13(2), jkac315.
    [CrossRef]   [Google Scholar]
  179. Bertram, A., Fairclough, D., Sandoval‐Castillo, J., Brauer, C., Fowler, A., Wellenreuther, M., & Beheregaray, L. B. (2022). Fisheries genomics of snapper (Chrysophrys auratus) along the west Australian coast. Evolutionary Applications, 15(7), 1099-1114.
    [CrossRef]   [Google Scholar]
  180. Blommaert, J., Sandoval-Castillo, J., Beheregaray, L. B., & Wellenreuther, M. (2024). Peering into the gaps: Long-read sequencing illuminates structural variants and genomic evolution in the Australasian snapper. Genomics, 116(5), 110929.
    [CrossRef]   [Google Scholar]
  181. Timm, L. E., Jackson, T. L., Browder, J. A., & Bracken-Grissom, H. D. (2021). Population Genomics of the Commercially Important Gulf of Mexico Pink Shrimp Farfantepenaeus duorarum Support Models of Juvenile Transport Around the Florida Peninsula. Frontiers in Ecology and Evolution, 9, 659134.
    [CrossRef]   [Google Scholar]
  182. Ferrette, B. L. D. S., Coimbra, R. T., Winter, S., De Jong, M. J., Williams, S. M., Coelho, R., ... & Janke, A. (2023). Seascape Genomics and Phylogeography of the Sailfish (Istiophorus platypterus). Genome Biology and Evolution, 15(4), evad042.
    [CrossRef]   [Google Scholar]
  183. Woodings, L. N., Murphy, N. P., Liggins, G. W., Miller, M. E., Ballinger, G. M., Lau, S. C., & Strugnell, J. M. (2021). Population genomics of the Eastern Rock Lobster, Sagmariasus verreauxi, during spawning stock recovery from over-exploitation. ICES Journal of Marine Science, 78(7), 2448-2459.
    [CrossRef]   [Google Scholar]
  184. Timm, L. E., Tucker, N., Rix, A., LaBua, S., López, J. A., Boswell, K. M., & Glass, J. R. (2023). The untapped potential of seascape genomics in the North Pacific. Frontiers in Conservation Science, 4, 1249551.
    [CrossRef]   [Google Scholar]
  185. Van Oppen, M. J., & Coleman, M. A. (2022). Advancing the protection of marine life through genomics. PLoS Biology, 20(10), e3001801.
    [CrossRef]   [Google Scholar]
  186. Caccavo, J. A., Arantes, L. S., Celemín, E., Mbedi, S., Sparmann, S., & Mazzoni, C. J. (2024). Whole‐genome resequencing improves the utility of otoliths as a critical source of DNA for fish stock research and monitoring. Molecular Ecology Resources, 24(8), e14013.
    [CrossRef]   [Google Scholar]
  187. Casas, L., & Saborido-Rey, F. (2023). A review of genomics methods and bioinformatics tools for the analysis of close-kin mark-recapture. Frontiers in Marine Science, 10, 1113870.
    [CrossRef]   [Google Scholar]
  188. Casas, L., Hanel, R., Piferrer, F., & Saborido-Rey, F. (2023). Prospects and challenges for the implementation of HTS genetic methods in fisheries research surveys and stock assessments. Frontiers in Marine Science, 10, 1238133.
    [CrossRef]   [Google Scholar]
  189. Andersson, L., Bekkevold, D., Berg, F., Farrell, E. D., Felkel, S., Ferreira, M. S., ... & Pettersson, M. (2024). How fish population genomics can promote sustainable fisheries: A road map. Annual Review of Animal Biosciences, 12(1), 1-20.
    [CrossRef]   [Google Scholar]
  190. Attard, C. R., Sandoval-Castillo, J., Gilligan, D. M., Unmack, P. J., Faulks, L. K., & Beheregaray, L. B. (2022). Genomics outperforms genetics to manage mistakes in fisheries stocking of threatened species. Biodiversity and Conservation, 31(3), 895-908.
    [CrossRef]   [Google Scholar]
  191. Cao, H. X., Vu, G. T. H., & Gailing, O. (2022). From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees. International Journal of Molecular Sciences, 23(2), 966.
    [CrossRef]   [Google Scholar]
  192. Sharma, U., Sankhyan, H. P., Kumari, A., Thakur, S., Thakur, L., Mehta, D., ... & Sankhyan, N. (2024). Genomic selection: A revolutionary approach for forest tree improvement in the wake of climate change. Euphytica, 220(1), 9.
    [CrossRef]   [Google Scholar]
  193. Mostert‐O'Neill, M. M., Tate, H., Reynolds, S. M., Mphahlele, M. M., van den Berg, G., Verryn, S. D., ... & Myburg, A. A. (2022). Genomic consequences of artificial selection during early domestication of a wood fibre crop. New Phytologist, 235(5), 1944-1956.
    [CrossRef]   [Google Scholar]
  194. Anders, C., Hoengenaert, L., & Boerjan, W. (2023). Accelerating wood domestication in forest trees through genome editing: Advances and prospects. Current opinion in plant biology, 71, 102329.
    [CrossRef]   [Google Scholar]
  195. Ahmar, S., Ballesta, P., Ali, M., & Mora-Poblete, F. (2021). Achievements and challenges of genomics-assisted breeding in forest trees: From marker-assisted selection to genome editing. International Journal of Molecular Sciences, 22(19), 10583.
    [CrossRef]   [Google Scholar]
  196. Burley, J. T., Kellner, J. R., Hubbell, S. P., & Faircloth, B. C. (2021). Genome assemblies for two Neotropical trees: Jacaranda copaia and Handroanthus guayacan. G3, 11(2), jkab010.
    [CrossRef]   [Google Scholar]
  197. Niu, S., & Li, Q. (2024). From haploid to reference: a new milestone in poplar genomics. Forestry Research, 4, e020.
    [CrossRef]   [Google Scholar]
  198. Tumas, H., Ilska, J. J., Gérardi, S., Laroche, J., A’Hara, S., Boyle, B., ... & MacKay, J. J. (2024). High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers. G3: Genes, Genomes, Genetics, 14(4), jkae020.
    [CrossRef]   [Google Scholar]
  199. Capblancq, T., Sękiewicz, K., & Dering, M. (2024). Forest genomics in the Caucasus through the lens of its dominant tree species–Fagus orientalis. Molecular Ecology, 33(16), e17475.
    [CrossRef]   [Google Scholar]
  200. Luo, L., Ye, P., Lin, Q., Liu, M., Hao, G., Wei, T., & Sahu, S. K. (2024). From sequences to sustainability: exploring dipterocarp genomes for oleoresin production, timber quality, and conservation. Plant Science, 112139.
    [CrossRef]   [Google Scholar]
  201. Han, B., Wang, L., Xian, Y., Xie, X. M., Li, W. Q., Zhao, Y., ... & Jia, K. H. (2022). A chromosome-level genome assembly of the Chinese cork oak (Quercus variabilis). Frontiers in Plant Science, 13, 1001583.
    [CrossRef]   [Google Scholar]
  202. Matallana-Ramirez, L. P., Whetten, R. W., Sanchez, G. M., & Payn, K. G. (2021). Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America. Frontiers in plant science, 12, 606908.
    [CrossRef]   [Google Scholar]
  203. Shirasawa, K., Mishima, K., Hirakawa, H., Hirao, T., Tsubomura, M., Nagano, S., ... & Takahashi, M. (2024). Haplotype-resolved de novo genome assemblies of four coniferous tree species. Journal of Forest Research, 29(2), 151-157.
    [CrossRef]   [Google Scholar]
  204. Feng, J., Dan, X., Cui, Y., Gong, Y., Peng, M., Sang, Y., ... & Wang, J. (2024). Integrating evolutionary genomics of forest trees to inform future tree breeding amidst rapid climate change. Plant Communications, 5(10), 101044.
    [CrossRef]   [Google Scholar]
  205. Abiri, R., Abdul-Hamid, H., & Leung, D. W. (2023). Advanced insights into environmental stress and tolerance mechanisms in forest trees. Frontiers in Plant Science, 14, 1273663.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Yang, Y. (2025). The Application of Genomics in Agriculture. Agricultural Science and Food Processing, 2(1), 26–46. https://doi.org/10.62762/ASFP.2025.111574

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 115
PDF Downloads: 34

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Agricultural Science and Food Processing

Agricultural Science and Food Processing

ISSN: 3066-1579 (Online) | ISSN: 3066-1560 (Print)

Email: xucm@btbu.edu.cn

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.