-
CiteScore
1.00
Impact Factor
Volume 2, Issue 1, IECE Transactions on Sensing, Communication, and Control
Volume 2, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Xue-Bo JIN
Xue-Bo JIN
Beijing Technology and Business University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Sensing, Communication, and Control, Volume 2, Issue 1, 2025: 25-35

Free to Read | Research Article | 20 March 2025
Visual Intelligence in Neuro-Oncology: Effective Brain Tumor Detection through Optimized Convolutional Neural Networks
1 Department of Computer Engineering, Marwadi University, Gujarat 360001, India
2 Mardan Medical Complex, Mardan 23200, Pakistan
3 Northwest School of Medicine, Peshawar 25000, Pakistan
4 Tata Consultancy Services Ltd., Edison, NJ 08837, United States
* Corresponding Author: Om Prakash Suthar, [email protected]
Received: 27 December 2024, Accepted: 14 February 2025, Published: 20 March 2025  
Abstract
Brain tumor detection (BTD) is a crucial task, as early detection can save lives. Medical professionals require visual intelligence assistance to efficiently and accurately identify brain tumors. Conventional methods often result in misrecognition, highlighting a critical research gap. To address this, a novel BTD system is proposed to predict the presence of a tumor in a given MRI image. The system leverages a convolutional neural network (CNN) architecture, combined with a multi-layer perceptron (MLP) for feature extraction and understanding complex pixel patterns. An extensive ablation study was conducted to empirically analyze and identify the optimal model for the task. The findings demonstrate that the proposed method outperforms existing approaches. Notably, the model with two convolutional layers achieved an accuracy of 85%, while a single-layer model attained an impressive accuracy of 99.6%.

Graphical Abstract
Visual Intelligence in Neuro-Oncology: Effective Brain Tumor Detection through Optimized Convolutional Neural Networks

Keywords
deep learning
convolutional neural network
brain tumor classification
multilayer perceptron
detection system
AI

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest. While Waqas Ullah is an employee of Mardan Medical Complex, Mardan 23200, Pakistan; Chirag Agarwal is an employee of Tata Consultancy Services Ltd., Edison, NJ 08837, United States; and other authors are affiliated with their respective institutions, these affiliations had no influence on the study design, data collection, analysis, interpretation, or publication of the results.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Reyes, D., & Sánchez, J. (2024). Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging. Heliyon, 10(3), e25468.
    [CrossRef]   [Google Scholar]
  2. Srinivasan, S., Francis, D., Mathivanan, S. K., Rajadurai, H., Shivahare, B. D., & Shah, M. A. (2024). A hybrid deep CNN model for brain tumor image multi-classification. BMC Medical Imaging, 24(1), 21.
    [CrossRef]   [Google Scholar]
  3. Saeedi, S., Rezayi, S., Keshavarz, H., & R. Niakan Kalhori, S. (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 16.
    [CrossRef]   [Google Scholar]
  4. Işın, A., Direkoğlu, C., & Şah, M. (2016). Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods. Procedia Computer Science, 102, 317–324.
    [CrossRef]   [Google Scholar]
  5. Mathivanan, S. K., Sonaimuthu, S., Murugesan, S., Rajadurai, H., Shivahare, B. D., & Shah, M. A. (2024). Employing deep learning and transfer learning for accurate brain tumor detection. Scientific Reports, 14(1), 7232.
    [CrossRef]   [Google Scholar]
  6. Soomro, T. A., Zheng, L., Afifi, A. J., Ali, A., Soomro, S., Yin, M., & Gao, J. (2022). Image segmentation for MR brain tumor detection using machine learning: a review. IEEE Reviews in Biomedical Engineering, 16, 70-90.
    [CrossRef]   [Google Scholar]
  7. Amin, J., Sharif, M., Raza, M., Saba, T., & Anjum, M. A. (2019). Brain tumor detection using statistical and machine learning method. Computer methods and programs in biomedicine, 177, 69-79.
    [CrossRef]   [Google Scholar]
  8. Rawas, S., Tafran, C., & AlSaeed, D. (2024). ChatGPT-powered deep learning: elevating brain tumor detection in MRI scans. Applied Computing and Informatics.
    [CrossRef]   [Google Scholar]
  9. Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms. Frontiers in Public Health, 11.
    [CrossRef]   [Google Scholar]
  10. Nazir, S., & Kaleem, M. (2023). Federated Learning for Medical Image Analysis with Deep Neural Networks. Diagnostics, 13(9), 1532.
    [CrossRef]   [Google Scholar]
  11. Srinivas, C., K. S., N. P., Zakariah, M., Alothaibi, Y. A., Shaukat, K., Partibane, B., & Awal, H. (2022). Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images. Journal of Healthcare Engineering, 2022, 1–17.
    [CrossRef]   [Google Scholar]
  12. Dhar, T., Dey, N., Borra, S., & Sherratt, R. S. (2023). Challenges of Deep Learning in Medical Image Analysis—Improving Explainability and Trust. IEEE Transactions on Technology and Society, 4(1), 68–75.
    [CrossRef]   [Google Scholar]
  13. Nassar, S. E., Yasser, I., Amer, H. M., & Mohamed, M. A. (2024). A robust MRI-based brain tumor classification via a hybrid deep learning technique. The Journal of Supercomputing, 80(2), 2403–2427.
    [CrossRef]   [Google Scholar]
  14. Sankararao, Y., & Khasim, S. (2024). An Effective analysis of brain tumor detection using deep learning. EAI Endorsed Transactions on Pervasive Health and Technology, 10.
    [CrossRef]   [Google Scholar]
  15. Gong, Y., Qiu, H., Liu, X., Yang, Y., & Zhu, M. (2024). Research and Application of Deep Learning in Medical Image Reconstruction and Enhancement. Frontiers in Computing and Intelligent Systems, 7(3), 72–76.
    [CrossRef]   [Google Scholar]
  16. ATASEVER, S., AZGINOGLU, N., TERZI, D. S., & TERZI, R. (2023). A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clinical Imaging, 94, 18–41.
    [CrossRef]   [Google Scholar]
  17. Akter, A., Nosheen, N., Ahmed, S., Hossain, M., Yousuf, M. A., Almoyad, M. A. A., Hasan, K. F., & Moni, M. A. (2024). Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. Expert Systems with Applications, 238, 122347.
    [CrossRef]   [Google Scholar]
  18. Zahoor, M. M., Khan, S. H., Alahmadi, T. J., Alsahfi, T., Mazroa, A. S. Al, Sakr, H. A., Alqahtani, S., Albanyan, A., & Alshemaimri, B. K. (2024). Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN. Biomedicines, 12(7), 1395.
    [CrossRef]   [Google Scholar]
  19. Gómez-Guzmán, M. A., Jiménez-Beristaín, L., García-Guerrero, E. E., López-Bonilla, O. R., Tamayo-Perez, U. J., Esqueda-Elizondo, J. J., Palomino-Vizcaino, K., & Inzunza-González, E. (2023). Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics, 12(4), 955.
    [CrossRef]   [Google Scholar]
  20. Alenezi, A. M., Aloqalaa, D. A., Singh, S. K., Alrabiah, R., Habib, S., Islam, M., & Daradkeh, Y. I. (2024). Multiscale attention-over-attention network for retinal disease recognition in OCT radiology images. Frontiers in Medicine, 11.
    [CrossRef]   [Google Scholar]
  21. Smitha, P. S., Balaarunesh, G., Sruthi Nath, C., & Sabatini S, A. (2024). Classification of brain tumor using deep learning at early stage. Measurement: Sensors, 35, 101295.
    [CrossRef]   [Google Scholar]
  22. Ullah, N., Khan, J. A., Khan, M. S., Khan, W., Hassan, I., Obayya, M., Negm, N., & Salama, A. S. (2022). An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. Applied Sciences, 12(11), 5645.
    [CrossRef]   [Google Scholar]
  23. Rana, M., & Bhushan, M. (2023). Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimedia Tools and Applications, 82(17), 26731–26769.
    [CrossRef]   [Google Scholar]
  24. Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Pramanik, M. A. J., Aryal, S., Almoyad, M. A. A., Hasan, K. F., & Moni, M. A. (2023). An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning. Expert Systems with Applications, 230, 120534.
    [CrossRef]   [Google Scholar]
  25. Younis, A., Qiang, L., Nyatega, C. O., Adamu, M. J., & Kawuwa, H. B. (2022). Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Applied Sciences, 12(14), 7282.
    [CrossRef]   [Google Scholar]
  26. Chelghoum, R., Ikhlef, A., Hameurlaine, A., & Jacquir, S. (2020, May). Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images. In IFIP international conference on artificial intelligence applications and innovations (pp. 189-200). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  27. Sultanpure, K. A., Bagade, J., Bangare, S. L., Bangare, M. L., Bamane, K. D., & Patankar, A. J. (2024). Internet of things and deep learning based digital twins for diagnosis of brain tumor by analyzing MRI images. Measurement: Sensors, 33, 101220.
    [CrossRef]   [Google Scholar]
  28. Anantharajan, S., Gunasekaran, S., Subramanian, T., & R, V. (2024). MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sensors, 31, 101026.
    [CrossRef]   [Google Scholar]
  29. Seetha, J., & Raja, S. S. (2018). Brain Tumor Classification Using Convolutional Neural Networks. Biomedical and Pharmacology Journal, 11(3), 1457–1461.
    [CrossRef]   [Google Scholar]
  30. Kalaiselvi, K., Karthikeyan, C., Devi, M. S., & Kalpana, C. (2020). Improved classification of brain tumor in MR images using RNN classification framework. Int. J. Innov. Technol. Explor. Eng.(IJITEE), 9, 1098-1101.
    [Google Scholar]
  31. Amin, J., Sharif, M., Raza, M., Saba, T., Sial, R., & Shad, S. A. (2020). Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Computing and Applications, 32, 15965-15973.
    [CrossRef]   [Google Scholar]
  32. Vankdothu, R., Hameed, M. A., & Fatima, H. (2022). A brain tumor identification and classification using deep learning based on CNN-LSTM method. Computers and Electrical Engineering, 101, 107960.
    [CrossRef]   [Google Scholar]
  33. Fasihi, M. S., & Mikhael, W. B. (2021, August). Brain tumor grade classification using LSTM neural networks with domain pre-transforms. In 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 529-532). IEEE.
    [CrossRef]   [Google Scholar]
  34. Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in biology and medicine, 111, 103345. Computer Standards & Interfaces, 92, 103936.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Suthar, O. P., Zinzuvadia, Y., Ullah, W., Khan, H., & Agarwal, C. (2025). Visual Intelligence in Neuro-Oncology: Effective Brain Tumor Detection through Optimized Convolutional Neural Networks. IECE Transactions on Sensing, Communication, and Control, 2(1), 25–35. https://doi.org/10.62762/TSCC.2024.964451

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 73
PDF Downloads: 14

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Sensing, Communication, and Control

IECE Transactions on Sensing, Communication, and Control

ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.