-
CiteScore
2.50
Impact Factor
Volume 2, Issue 1, Chinese Journal of Information Fusion
Volume 2, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Xiaoling Wang
Xiaoling Wang
East China Normal University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Chinese Journal of Information Fusion, Volume 2, Issue 1, 2025: 27-37

Open Access | Research Article | 20 March 2025
Integrating Relationship Path and Entity Neighbourhood Information for Knowledge Graph Intelligence of Social Things
1 Department of Computer Science Engineering, Model Institute of Engineering and Technology, Jammu, J&K 181123, India
2 Division of Research and Development, Lovely Professional University, Phagwara 144411, India
* Corresponding Author: Mohammad Shabaz, [email protected]
Received: 02 February 2025, Accepted: 18 March 2025, Published: 20 March 2025  
Abstract
In the evolving framework of the Intelligence of Social Things (IoST), which amalgamates social networks and IoT ecosystems, knowledge graphs are essential for facilitating networked systems to efficiently process and leverage intricate relational data. Knowledge graphs offer essential technical assistance for various artificial intelligence applications, such as e-commerce, intelligent navigation, healthcare, and social media. Nonetheless, current knowledge graphs frequently lack completeness, harboring a considerable quantity of implicit knowledge that remains to be revealed. Consequently, tackling the difficulty of finalising knowledge graphs has emerged as a pressing research priority. Most contemporary methods separately analyse entity neighbourhood information or connection routes, neglecting the significance of entity neighbourhood information in the investigation of relationship paths. A novel approach, RPEN-KGC (Relationship Path and Entity Neighbourhood Knowledge Graph Completion), is suggested to enable the fusion of relationship paths and entity neighbourhood information for knowledge graph completion. RPEN-KGC comprises a sampler and an inferencer. The sampler conducts random walks between entity pairs to furnish dependable inference methods for the inferencer. The sampler utilises a contrastive method grounded in entity neighbourhood similarity to steer random walks, hence enhancing sampling efficiency and augmenting inference strategies. The inferencer derives semantic characteristics of relationship paths and deduces a greater variety of relationship paths within the semantic domain. Experiments performed on the public NELL-995 and FB15K-237 datasets for the link prediction task indicate that RPEN-KGC significantly enhances most metrics relative to baseline approaches. These findings demonstrate that RPEN-KGC proficiently forecasts absent information in knowledge graphs.

Graphical Abstract
Integrating Relationship Path and Entity Neighbourhood Information for Knowledge Graph Intelligence of Social Things

Keywords
intelligence of social things
artificial intelligence
knowledge graph
relationship path
entity neighborhood information
graph completion

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Khelloufi, A., Ning, H., Naouri, A., Sada, A.B., Qammar, A., Khalil, A., Mao, L., & Dhelim, S. (2024). A multimodal latent-features-based service recommendation system for the social Internet of Things. IEEE Transactions on Computational Social Systems, 11(4), 5388-5403.
    [CrossRef]   [Google Scholar]
  2. Li, Q., Zhang, Y., & Qiao, G. (2022). GAFM: A Knowledge Graph Completion Method Based on Graph Attention Faded Mechanism. Information Processing & Management, 59(5), 103004.
    [CrossRef]   [Google Scholar]
  3. Xue, X., Yu, X., Zhou, D., Peng, C., Wang, X., Liu, D., & Wang, F.Y. (2023). Computational experiments for complex social systems—Part III: the docking of domain models. IEEE Transactions on Computational Social Systems, 11(2), 1766-1780.
    [CrossRef]   [Google Scholar]
  4. Wan, Y., Jiang, N., & Liu, Z. (2024). Dynamic Hypergraph Modeling and Robustness Analysis for SIoT. CMES - Computer Modeling in Engineering and Sciences, 140(3), 3017-3034.
    [CrossRef]   [Google Scholar]
  5. Gao, H., Xu, K., Cao, M., Xiao, J., Xu, Q., & Yin, Y. (2021). The deep features and attention mechanism-based method to dish healthcare under social IoT systems: An empirical study with a hand-deep local–global net. IEEE Transactions on Computational Social Systems, 9(1), 336-347.
    [CrossRef]   [Google Scholar]
  6. Dong, H., Wang, P., Xiao, M., Ning, Z., Wang, P., & Zhou, Y. (2024). Temporal inductive path neural network for temporal knowledge graph reasoning. Artificial Intelligence, 329, 104085.
    [CrossRef]   [Google Scholar]
  7. Farhadi, B., Rahmani, A.M., Asghari, P., & Hosseinzadeh, M. (2021). Friendship selection and management in social internet of things: A systematic review. Computer Networks, 201, 108568.
    [CrossRef]   [Google Scholar]
  8. Yang, J., Yang, L.T., Wang, H., Gao, Y., Zhao, Y., Xie, X., & Lu, Y. (2023). Representation learning for knowledge fusion and reasoning in Cyber–Physical–Social Systems: Survey and perspectives. Information Fusion, 90, 59-73.
    [CrossRef]   [Google Scholar]
  9. Li, F., Ma, G., Chen, F., Lyu, Q., Wang, Z., & Zhang, J. (2024). Enhanced enterprise-student matching with meta-path based graph neural network. Journal of King Saud University - Computer and Information Sciences, 36(6), 102116.
    [CrossRef]   [Google Scholar]
  10. Singh, I., Agarwal, K., & Ganapathy, S. (2024). Advancing allergy source mapping: A comprehensive multidisciplinary framework integrating machine learning, graph theory and game theory. Applied Soft Computing, 166, 112147.
    [CrossRef]   [Google Scholar]
  11. Termos, M., Ghalmane, Z., Brahmia, M.A., Fadlallah, A., Jaber, A., & Zghal, M. (2024). GDLC: A new Graph Deep Learning framework based on centrality measures for intrusion detection in IoT networks. Internet of Things, 26, 101214.
    [CrossRef]   [Google Scholar]
  12. Wang, X., Wang, Y., Yang, J., Jia, X., Li, L., Ding, W., & Wang, F.Y. (2024). The survey on multi-source data fusion in cyber-physical-social systems: Foundational infrastructure for industrial metaverses and industries 5.0. Information Fusion, 107, 102321.
    [CrossRef]   [Google Scholar]
  13. Adhikari, D., Jiang, W., Zhan, J., Rawat, D.B., & Bhattarai, A. (2024). Recent advances in anomaly detection in Internet of Things: Status, challenges, and perspectives. Computer Science Review, 54, 100665.
    [CrossRef]   [Google Scholar]
  14. Priyadarshini, K., Sikkandar, M.Y., AlDuraywish, A., & Alqahtani, T.M. (2024). Integrating relational and sequential information for enhanced detection of autoimmune disorders with relational Neural Networks and Long Short-Term Memory networks. Biomedical Signal Processing and Control, 96(Part A), 106495.
    [CrossRef]   [Google Scholar]
  15. Zhang, Y., Li, Y., & Zhang, F. (2024). Multi-level urban street representation with street-view imagery and hybrid semantic graph. ISPRS Journal of Photogrammetry and Remote Sensing, 218(Part B), 19-32.
    [CrossRef]   [Google Scholar]
  16. Zavarella, V., Consoli, S., Recupero, D.R., Fenu, G., Angioni, S., Buscaldi, D., Dessí, D., & Osborne, F. (2024). Triplétoile: Extraction of knowledge from microblogging text. Heliyon, 10(12), e32479.
    [CrossRef]   [Google Scholar]
  17. Ammar, K., Inoubli, W., Zghal, S., Borji, A., & Nguifo, E.M. (2023). Trans-Trip: Translation-based embedding with Triplets for Heterogeneous Graphs. Procedia Computer Science, 225, 1104-1113.
    [CrossRef]   [Google Scholar]
  18. Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., & Zhang, T.S. (2022). Knowledge graph and knowledge reasoning: A systematic review. Journal of Electronic Science and Technology, 20(2), 100159.
    [CrossRef]   [Google Scholar]
  19. Basole, R.C., Park, H., & Seuss, C.D. (2024). Complex business ecosystem intelligence using AI-powered visual analytics. Decision Support Systems, 178, 114133.
    [CrossRef]   [Google Scholar]
  20. Das, R., & Soylu, M. (2023). A key review on graph data science: The power of graphs in scientific studies. Chemometrics and Intelligent Laboratory Systems, 240, 104896.
    [CrossRef]   [Google Scholar]
  21. Roopa, M.S., Pattar, S., Buyya, R., Venugopal, K.R., Iyengar, S.S., & Patnaik, L.M. (2019). Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions. Computer Communications, 139, 32-57.
    [CrossRef]   [Google Scholar]
  22. Villanueva-Merino, A., Urra-Uriarte, S., Izkara, J.L., Campos-Cordobes, S., Aranguren, A., & Molina-Costa, P. (2024). Leveraging Local Digital Twins for planning age-friendly urban environments. Cities, 155, 105458.
    [CrossRef]   [Google Scholar]
  23. Cheng, D., Dong, C., He, W., Chen, Z., Liu, X., & Zhang, H. (2023). A fine-grained detection method for gate-level hardware Trojan based on bidirectional Graph Neural Networks. Journal of King Saud University - Computer and Information Sciences, 35(10), 101822.
    [CrossRef]   [Google Scholar]
  24. Hamaguchi, T., Oiwa, H., Shimbo, M., & Matsumoto, Y. (2017). Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach. arXiv preprint arXiv:1706.05674.
    [Google Scholar]
  25. Hao, Y., Zhang, Y., Liu, K., He, S., Liu, Z., Wu, H., & Zhao, J. (2017). An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In ACL, volume 1, 221–231.
    [CrossRef]   [Google Scholar]
  26. Nguyen, H.L., Vu, D.T., & Jung, J.J. (2020). Knowledge graph fusion for smart systems: A Survey. Information Fusion, 61, 56-70.
    [CrossRef]   [Google Scholar]
  27. Tiddi, I., Schlobach, S. (2022). Knowledge graphs as tools for explainable machine learning: A survey. Artificial Intelligence, 302, 103627.
    [CrossRef]   [Google Scholar]
  28. Cherif, A., Ammar, H., Kalkatawi, M., Alshehri, S., & Imine, A. (2024). Encoder–decoder graph neural network for credit card fraud detection. Journal of King Saud University - Computer and Information Sciences, 36(3), 102003.
    [CrossRef]   [Google Scholar]
  29. Guo, Z., Liu, Q., & Zou, B. (2022). Research on knowledge reasoning of TCM based on knowledge graphs. Digital Chinese Medicine, 5(4), 386-393.
    [CrossRef]   [Google Scholar]
  30. Bhardwaj, K.K., Banyal, S., Sharma, D.K., & Al-Numay, W. (2022). Internet of things based smart city design using fog computing and fuzzy logic. Sustainable Cities and Society, 79, 103712.
    [CrossRef]   [Google Scholar]
  31. Boy, G.A. (2023). An epistemological approach to human systems integration. Technology in Society, 74, 102298.
    [CrossRef]   [Google Scholar]
  32. Wu, T., You, X., Xian, X., Pu, X., Qiao, S., & Wang, C. (2024). Towards deep understanding of graph convolutional networks for relation extraction. Data & Knowledge Engineering, 149, 102265.
    [CrossRef]   [Google Scholar]
  33. Khlifi, M.K., Boulila, W., & Farah, I.R. (2023). Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applications — A comprehensive review. Computer Science Review, 50, 100596.
    [CrossRef]   [Google Scholar]
  34. Ju, W., Fang, Z., Gu, Y., Liu, Z., Long, Q., Qiao, Z., Qin, Y., Shen, J., Sun, F., Xiao, Z., Yang, J., Yuan, J., Zhao, Y., Wang, Y., Luo, X., & Zhang, M. (2024). A Comprehensive Survey on Deep Graph Representation Learning. Neural Networks, 173, 106207.
    [CrossRef]   [Google Scholar]
  35. Yuan, B., Liu, L., & Antonopoulos, N. (2018). Efficient service discovery in decentralized online social networks. Future Generation Computer Systems, 86, 775-791.
    [CrossRef]   [Google Scholar]
  36. Jia, Y., Wang, J., Shou, W., Hosseini, M.R., & Bai, Y. (2023). Graph neural networks for construction applications. Automation in Construction, 154, 104984.
    [CrossRef]   [Google Scholar]
  37. Sun, R. (2024). Chapter 1 - History of graph computing and graph databases. In The Essential Criteria of Graph Databases (pp. 1-32). Elsevier.
    [CrossRef]   [Google Scholar]
  38. Wani, N.A., Kumar, R., Mamta, Bedi, J., & Rida, I. (2024). Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with Explainable AI in healthcare. Information Fusion, 110, 102472.
    [CrossRef]   [Google Scholar]
  39. Mahboubi, A., Luong, K., Aboutorab, H., Bui, H.T., Jarrad, G., Bahutair, M., Camtepe, S., Pogrebna, G., Ahmed, E., Barry, B., & Gately, H. (2024). Evolving techniques in cyber threat hunting: A systematic review. Journal of Network and Computer Applications, 232, 104004.
    [CrossRef]   [Google Scholar]
  40. Wei, S., Meng, S., Li, Q., Zhou, X., Qi, L., & Xu, X. (2023). Edge-enabled federated sequential recommendation with knowledge-aware Transformer. Future Generation Computer Systems, 148, 610-622.
    [CrossRef]   [Google Scholar]
  41. Iovanella, A. (2024). Exploiting network science in business process management: A conceptual framework. Chaos, Solitons & Fractals, 178, 114344.
    [CrossRef]   [Google Scholar]
  42. Scaffidi, F. (2024). Average social and territorial innovation impacts of industrial heritage regeneration. Cities, 148, 104907.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Shabaz, M., & Soni, M. (2025). Integrating Relationship Path and Entity Neighbourhood Information for Knowledge Graph Intelligence of Social Things. Chinese Journal of Information Fusion, 2(1), 27–37. https://doi.org/10.62762/CJIF.2025.197460

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 144
PDF Downloads: 24

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Chinese Journal of Information Fusion

Chinese Journal of Information Fusion

ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.