Chinese Journal of Information Fusion | Volume 2, Issue 1: 70-78, 2025 | DOI:10.62762/CJIF.2025.146072
Abstract
Few-shot learning aims to recognize new-class items under the circumstances with a few labeled support samples. However, many methods may suffer from poor guidance of limited new-class samples that are not suitable for being regarded as class centers. Recent works use word embedding to enrich the new-class distribution message but only use simple mapping between visual and semantic features during training. To solve the aforementioned problems, we propose a method that constructs a class relation graph by semantic meaning as guidance for feature extraction and fusion, to help the learning of the second-order relation information, with a light training request. In addition, we introduce two w... More >
Graphical Abstract
