IECE Transactions on Emerging Topics in Artificial Intelligence
ISSN: request pending (Online)
Email: [email protected]
[1]Wang, Y., Tang, C., Wang, S., Cheng, L., Wang, R., Tan, M., & Hou, Z. (2021). Target tracking control of a biomimetic underwater vehicle through deep reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3741-3752.
[2]Zhao, D., Cao, J., Zhu, X., Zhang, Z., Arun, P. V., Guo, Y., ... & Hu, J. (2022). Hyperspectral video target tracking based on deep edge convolution feature and improved context filter. Remote Sensing, 14(24), 6219.
[3]Gao, S., Peng, Z., Liu, L., Wang, H., & Wang, D. (2021). Coordinated target tracking by multiple unmanned surface vehicles with communication delays based on a distributed event-triggered extended state observer. Ocean Engineering, 227, 108283.
[4]Wang, C., Wang, Y., Han, Y., Song, L., Quan, Z., Li, J., & Li, X. (2017, January). CNN-based object detection solutions for embedded heterogeneous multicore SoCs. In 2017 22nd Asia and South Pacific design automation conference (ASP-DAC) (pp. 105-110). IEEE.
[5]Li, T., Song, Y., & Fan, H. (2023). From target tracking to targeting track: A data-driven yet analytical approach to joint target detection and tracking. Signal Processing, 205, 108883.
[6]Ram, S. S. (2022). Fusion of inverse synthetic aperture radar and camera images for automotive target tracking. IEEE Journal of Selected Topics in Signal Processing.
[7]Chinthi-Reddy, S. R., Lim, S., Choi, G. S., Chae, J., & Pu, C. (2022). DarkSky: Privacy-preserving target tracking strategies using a flying drone. Vehicular Communications, 35, 100459.
[8]Wang, J., Li, F., An, Y., Zhang, X., & Sun, H. (2024). Towards Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation. IEEE Transactions on Circuits and Systems for Video Technology.
[9]Ning, E., Wang, C., Zhang, H., Ning, X., & Tiwari, P. (2023). Occluded person re-identification with deep learning: a survey and perspectives. Expert Systems with Applications, 122419.
[10]Ning, X., Yu, Z., Li, L., Li, W., & Tiwari, P. (2024). DILF: Differentiable rendering-based multi-view Image–Language Fusion for zero-shot 3D shape understanding. Information Fusion, 102, 102033.
[11]Zhang, P., Yu, X., Bai, X., Wang, C., Zheng, J., & Ning, X. (2024). Joint discriminative representation learning for end-to-end person search. Pattern Recognition, 147, 110053.
[12]Ning, X., He, F., Dong, X., Li, W., Alenezi, F., & Tiwari, P. (2024). ICGNet: An intensity-controllable generation network based on covering learning for face attribute synthesis. Information Sciences, 660, 120130.
[13]Sun, N., Zhao, J., Wang, G., Liu, C., Liu, P., Tang, X., & Han, J. (2022). Transformer-based moving target tracking method for Unmanned Aerial Vehicle. Engineering Applications of Artificial Intelligence, 116, 105483.
[14]Ebrahimi, M., Ardeshiri, M., & Khanghah, S. A. (2022). Bearing-only 2D maneuvering target tracking using smart interacting multiple model filter. Digital Signal Processing, 126, 103497.
[15]Lv, C., Zhu, J., Tao, Z., & Pi, Y. (2022). An improved target tracking scheme based on MC-MPMC method for mobile wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2022(1), 74.
[16]Luo, J., Wang, Z., Chen, Y., Wu, M., & Yang, Y. (2020). An improved unscented particle filter approach for multi-sensor fusion target tracking. Sensors, 20(23), 6842.
[17]Xu, Y., Wang, Z., Li, Z., Yuan, Y., & Yu, G. (2020, April). Siamfc++: Towards robust and accurate visual tracking with target estimation guidelines. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 12549-12556).
[18]Islam, M. A., Alexandropoulos, G. C., & Smida, B. (2022, December). Simultaneous multi-user MIMO communications and multi-target tracking with full duplex radios. In 2022 IEEE Globecom Workshops (GC Wkshps) (pp. 19-24). IEEE.
[19]Li, G., Battistelli, G., Chisci, L., & Kong, L. (2020, September). Distributed multi-target tracking over an asynchronous multi-sensor network. In 2020 IEEE Radar Conference (RadarConf20) (pp. 1-6). IEEE.
[20]Mayer, C., Danelljan, M., Paudel, D. P., & Van Gool, L. (2021). Learning target candidate association to keep track of what not to track. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 13444-13454).
[21]Dong, L., Xu, H., Feng, X., Han, X., & Yu, C. (2020). An adaptive target tracking algorithm based on EKF for AUV with unknown Non-Gaussian process noise. Applied Sciences, 10(10), 3413.
[22]Zhang, J., Hu, T., Shao, X., Xiao, M., Rong, Y., & Xiao, Z. (2021). Multi-target tracking using windowed Fourier single-pixel imaging. Sensors, 21(23), 7934.
[23]Hong-Bin, Z. A. I., Long, H. E., & Yun-Feng, L. I. U. (2020, June). Target tracking method of transmission line insulator based on multi feature fusion and adaptive scale filter. In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE) (pp. 1626-1630). IEEE.
[24]Zarai, K., & Cherif, A. (2021). Adaptive filter based on Monte Carlo method to improve the non-linear target tracking in the radar system. Aerospace Systems, 4(1), 67-74.
[25]Shi, Y., Choi, J. W., Xu, L., Kim, H. J., Ullah, I., & Khan, U. (2020). Distributed target tracking in challenging environments using multiple asynchronous bearing-only sensors. Sensors, 20(9), 2671.
[26]Liu, Q., Liu, Y., & Lin, D. (2023). Revolutionizing Target Detection in Intelligent Traffic Systems: YOLOv8-SnakeVision. Electronics, 12(24), 4970.
[27]Zou, H., Zhan, H., & Zhang, L. (2022). Neural Network Based on Multi-Scale Saliency Fusion for Traffic Signs Detection. Sustainability, 14(24), 16491.
[28]Chen, X. (2022, October). Traffic Lights Detection Method Based on the Improved YOLOv5 Network. In 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT) (pp. 1111-1114). IEEE.
[29]Taouqi, I., Klilou, A., Chaji, K., & Arsalane, A. (2022, November). Yolov2 Implementation and Optimization for Moroccan Traffic Sign Detection. In The International Conference on Artificial Intelligence and Smart Environment (pp. 837-843). Cham: Springer International Publishing.
[30]Guillermo, M., Francisco, K., Concepcion, R., Fernando, A., Bandala, A., Vicerra, R. R., & Dadios, E. (2023, May). A Comparative Study on Satellite Image Analysis for Road Traffic Detection using YOLOv3-SPP, Keras RetinaNet and Full Convolutional Network. In 2023 8th International Conference on Business and Industrial Research (ICBIR) (pp. 578-584). IEEE.
[31]Li, Y., Li, J., & Meng, P. (2023). Attention-YOLOV4: a real-time and high-accurate traffic sign detection algorithm. Multimedia tools and applications, 82(5), 7567-7582.
[32]Tarun, R., & Esther, B. P. (2023, July). Traffic Anomaly Alert Model to Assist ADAS Feature based on Road Sign Detection in Edge Devices. In 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 824-828). IEEE.
[33]Krishnendhu, S. P., & Mohandas, P. (2023). SAD: Sensor-based Anomaly Detection System for Smart Junctions. IEEE Sensors Journal.
[34]Xia, J., Li, M., Liu, W., & Chen, X. (2023). DSRA-DETR: An Improved DETR for Multiscale Traffic Sign Detection. Sustainability, 15(14), 10862.
[35]Sun, S., Wang, Y., & Piao, Y. (2021, May). A Real-time Multi-target tracking method based on Deep Learning. In Journal of Physics: Conference Series (Vol. 1920, No. 1, p. 012112). IOP Publishing.
[36]Chen, X., Li, D., & Zou, Q. (2021). Exploiting Acceleration of the Target for Visual Object Tracking. IEEE Access, 9, 73818-73825.
[37]Zhao, F., Hui, K., Wang, T., Zhang, Z., & Chen, Y. (2021). A KCF-based incremental target tracking method with constant update speed. IEEE Access, 9, 73544-73560.
[38]Liu, Y., Pan, C., Bie, M., & Li, J. (2022). An efficient real-time target tracking algorithm using adaptive feature fusion. Journal of Visual Communication and Image Representation, 85, 103505.
[39]Yang, X., Zhu, S., Xia, S., & Zhou, D. (2020). A new TLD target tracking method based on improved correlation filter and adaptive scale. The Visual Computer, 36(9), 1783-1795.
[40]Duan, Y., Wu, W., Liu, L., Liu, S., Liang, P., & Zhang, Y. (2022, December). DTTrack: Target Tracking Algorithm Combining DaSiamRPN Tracker and Transformer Tracker. In Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence (pp. 1-5).
[41]Qian, K., Zhang, S. J., Ma, H. Y., & Sun, W. J. (2023). SiamIST: Infrared small target tracking based on an improved SiamRPN. Infrared Physics & Technology, 134, 104920.
IECE Transactions on Emerging Topics in Artificial Intelligence
ISSN: request pending (Online)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/